• Title/Summary/Keyword: 오일러 방정식

Search Result 82, Processing Time 0.025 seconds

On Quasi-Euler's Differential Equation

  • Choi, Seong-Hwan
    • Journal of the military operations research society of Korea
    • /
    • v.10 no.1
    • /
    • pp.15-22
    • /
    • 1984
  • 오일러의 미분 방정식은 보조 방정식을 이용하면 쉽게 일반해를 구할 수 있다. 정의된 유사-오일러 미분 방정식을 풀기 위해 규정된 조건을 만족토록 하면 보조 방정식을 이용하여 일반해를 쉽게 구할 수 있음을 보였다.

  • PDF

Temperature Preconditioning for Improving Convergence Characteristics in Calculating Low Mach Number Flows, I: Euler Equations (저속 유동 계산의 수렴성 개선을 위한 온도예조건화 I: 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.12
    • /
    • pp.1067-1074
    • /
    • 2007
  • A temperature preconditioning that modulates the derivative of density with respect to temperature is proposed to improve the convergence characteristics of the preconditioned Euler equations. Flows in a two-dimensional channel with a 10% circular bump in the middle of the channel were calculated at different speeds. The numerical dissipation terms of the Roe’s FDS scheme according to the temperature preconditioning are derived. It is shown that the temperature preconditioning accelerates convergence of the preconditioned Euler equations.

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part I - Euler Equations (비정렬 격자계에서 LU Implicit Scheme의 수렴성 및 안정성 해석 : Part I-오일러 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Euler equations on unstructured meshes. The von Neumann stability analysis technique was initially applied to a scalar model equation, and then the analysis was extended to the Euler equations. The results indicated that the convergence rate is governed by a specific combination of flow parameters. Based on this insight, it was shown that the LU scheme does not suffer any convergence deterioration at all grid aspect ratios, as long as the local time step is defined using an appropriate parameter combination.

Cancellation Problem of Preconditioned Euler Equations (예조건화 오일러 방정식의 계산 오차 문제)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.7
    • /
    • pp.586-591
    • /
    • 2007
  • The effects of cancellation errors on the convergence characteristics of preconditioned Euler equations at low Mach numbers are analyzed. Flows in a two-dimensional channel with a circular bump are calculated at different Mach numbers. It is shown that the cancellation error in the energy equation grows faster than those in the other equations as the Mach number decreases. It is also shown that the cancellation problem of the energy equation can be alleviated by multiplying the inversion of the preconditioner.

Comparison of Numerical Methods on Heat Transfer in a Rod with Second Order-Boundary Value Problem (이차 경계문제를 가지는 봉의 열전달에 대한 수치해석적 비교)

  • Kim, M.J.;Chea, G.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.5
    • /
    • pp.5-9
    • /
    • 2010
  • 본 연구는 수정 오일러 법칙을 이용한 봉의 열전달문제를 엄밀해와 수치해를 수치해석적 해법을 이용해 비교한 것이다. 경계조건으로는 열전도 및 대류가 동시에 존재하는 경우의 모델을 가정하여 계산하였고, 봉의 길이가 원주방향에 비해 상당히 길다고 가정하여 1차원으로 지배방정식을 정리하여 2차 상미분방정식을 유도하여 계산을 수행하였다. 계산을 수행한 결과 적절한 초기 추측값인 ${\beta}$값을 정의하면 오일러의 방정식으로도 충분히 만족할만한 결과를 얻을 수 있다는 것을 알았고, 지수함수 형태의 유도 상관식이 엄밀해와 ${\pm}1%$ 범위 내에서 일치한다는 결과를 얻었다.

Convergence Characteristics of Preconditioned Euler Equations (예조건화된 오일러 방정식의 수렴특성)

  • 이상현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.27-37
    • /
    • 2004
  • The convergence characteristics of preconditioned Euler equations were studied. A perturbation analysis was conducted to understand the behavior of the preconditioned Euler equations. Various speed flows in a two-dimensional channel with a 10% circular arc in the middle of the channel were calculated. Roe's FDS scheme was used for spatial discretization and the LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of pressure and velocity were maintained regardless of the Mach numbers but that the convergence characteristics of temperature were strongly related to the Mach number and became worse as the Mach number decreased. The perturbation analysis well explained the trend of the convergence characteristics and showed that the convergence characteristics are strongly related with the behavior o( the Preconditioning matrix.

Dynamics Formulations of the Universal-joint System Under Effect on Precession (세차운동을 고려한 유니버설 조인트 시스템의 동역학적 정식화)

  • Yun, Seong-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.23-26
    • /
    • 2010
  • 본 논문에서는 유니버설 조인트의 동역학적인 해석을 위하여 오일러 각 순서에 의한 방법과 4원수에 의한 방법으로 운동방정식을 유도하였다. 원동축과 종동축의 회전은 물론 세차운동을 하는 회전축을 포함할 때 각 방법의 상이점을 발견하였다. 이러한 시스템의 동역학적 정식화를 바탕으로 한 수치 예제를 통하여 기존의 오일러 각 방법과 제시한 4원수 방법의 해석 결과를 비교하였다.

  • PDF

Effects of Characteristic Condition Number on Convergence in Calculating Low Mach Number Flows, I : Euler Equations (저속 유동 계산의 수렴성에 미치는 특성 조건수의 영향 I : 오일러 방정식)

  • Lee, Sang-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.115-122
    • /
    • 2008
  • The effects of characteristic condition number on the convergence of preconditioned Euler equations were investigated. The two-dimensional preconditioned Euler equations adopting Choi and Merkle's preconditioning and the temperature preconditioning are considered. Preconditioned Roe's FDS scheme was adopted for spatial discretization and preconditioned LU-SGS scheme was used for time integration. It is shown that the convergence characteristics of the Euler equations are strongly affected by the characteristic condition number, and there is an optimal characteristic condition number for a problem. The optimal characteristic condition numbers for the Choi and Merkle's preconditioning and temperature preconditioning are different.

Inelastic Transient Dynamic Analysis of Two- and Three-dimensional Stress Problems by Particular Integral Boundary Element Method (로터 시스템 회전운동의 정식화 및 해석)

  • Yun, Seong-Ho;Ren, Li-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.475-482
    • /
    • 2008
  • This paper indicates that the use of Euler angles lacks in its consistency and exactness of analysis when it was applied to incorporate the rotational equation of motion for rotor systems by previous researcher. Kinetic energy and angular velocity are different from case to case depending on the way of choosing Euler angles and thus only the linear system has been investigated even though the rotor system has a very nonlinear behavior. A new methodology is applied by using both spherical coordinate and quaternion in the rotor rotation to overcome weaknesses of Euler angles and shows its superiority It is found through numerical examples that the use of quaternion will be a more useful and valid tool to derive the numerical model of the rotor system.

SUPERSONIC/HYPERSONIC UNSTEADY AERODYNAMIC ANALYSIS OF A WEDGE-TYPE AIRFOIL USING NONLINEAR PISTON THEORY AND EULER EQUATIONS (비선형 피스톤 이론과 오일러 방정식을 이용한 쐐기형 에어포일의 초음속/극초음속 비정상 공력해석)

  • Kim Dong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.1-8
    • /
    • 2005
  • In this study, unsteady aerodynamic analyses of a wedge-type airfoil based on nonlinear piston theory and Euler equations have been performed in supersonic and hypersonic flows. The third-order nonlinear piston theory (NPT) to calculate unsteady lift and moment coefficients is derived and applied in the time-domain. Also, unsteady flow quantities are obtained from the two-dimensional time-dependent Euler equations. For the CFD based unsteady aerodynamic analyses, an arbitrary Lagrangean-Eulerian (ALE) formulation for the Euler equations is used to calculate flow fluxes in the computational flow field with moving boundaries. Numerical comparisons for unsteady lift and moment coefficients are presented between NPT and Euler approaches. The results show very good agreements in the high supersonic and hypersonic flows. It means that the present NPT can be efficiently used to predict unsteady aerodynamic forces ol wedge type airfoils with dynamic motions in the high supersonic and hypersonic flow regimes.