• Title/Summary/Keyword: 오일러리안 해석

Search Result 31, Processing Time 0.021 seconds

LES of breakup and atomization of a liquid jet into cross turbulent flow (비정상 난류 유동장에서 수직 분사 액주의 분열 및 기화에 관한 LES)

  • Yang, Seung-Joon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.99-102
    • /
    • 2009
  • LES(Large eddy simulation) of breakup and atomization of a liquid jet into cross turbulent flow was performed. Two phase flow between a gas phase and a liquid phase was modeled by a mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid phases respectively. The first and second breakup of liquid column was observed. The penetration depth in cross flow was comparable with experimental data for several variant of a liquid-gas momentum flux ratio by varying liquid injection velocities. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

  • PDF

Numerical Simulation of Impact and Dynamic Deformation Based on Two-Step Eulerian Method (Two-Step Eulerian 기법 기반 충돌 및 동적 변형 해석)

  • 백승훈;이민형;김승조
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.47-54
    • /
    • 2006
  • In this paper, numerical algorithms applied in two-step eulerian scheme are investigated and implemented. Element quantities are advected with donor or van Leer algorithm. Nodal quantities are advected with Simplifed ALE [SALE] algorithm. Material interfaces are determined with Simple Line Interface Calculation [SLIC] algorithm. Practical aspects considered for code development are addressed in detail. The results of developed two-step Eulerian code are verified by comparing with those from pure lagrangian scheme and commercial code.

Numerical Study on the Humidification Efficiency of Humidifying Module Shapes of the Evaporative Humidifier (기화식 가습기에서 가습모듈 형상에 따른 가습효율의 수치해석 연구)

  • Kim, H.K.;Ohm, T.I.;Moon, S.H.;Yoon, H.K.;Bang, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2014
  • Adequate relative humidity is needed in the common living space, for human health, and industrial space, for maintenance and efficiency. Evaporative humidifier systems generally have slow response tendencies of air loads, but relatively low initial investment and maintenance costs. Humidification efficiency in the evaporative humidifier is dependent mostly on the shapes and arrays of humidifying modules. So, we tried to apply the computational fluid dynamics to the evaporative humidifier systems, and studied the humidification efficiency of evaporative humidifiers, through the outlet air conditions.

LES on breakup and atomization of a liquid jet into cross turbulent flow in a rectangular duct (사각 덕트내 난류 횡단류 유동장에 분사되는 액체 제트의 분열과 미립화에 관한 LES 해석)

  • Yoo, Young-Lin;Han, Doo-Hee;Sung, Hong-Gye;Jeon, Hyuk-Soo;Park, Chul-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.290-297
    • /
    • 2016
  • A two-phase Large Eddy Simulation(LES) has been conducted to investigate breakup and atomization of a liquid jet in a cross turbulent flow in a rectangular duct. Gas-droplet two-phase flow was solved by a coupled Eulerian-Lagrangian method which tracks every individual particles. Effects of liquid breakup models, sub-grid scale models, and a order of spatial discretization was investigated. The penetration depth in cross flow was comparable with experimental data by varying breakup model and LES scheme. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties (유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.597-608
    • /
    • 2009
  • In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

A Study on Shock-induced Detonation in Gap Test (충격 전달에 의한 Gap Test의 폭굉 반응 해석)

  • Kim, Bohoon;Kang, Wonkyu;Jang, Seung-gyo;Park, Jungsu;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2016
  • A pyrotechnic system consisting of donor/acceptor pair separated by a gap relies on shock attenuation characteristics of the gap material and shock sensitivity of the donor and acceptor charges. Despite of its common use, numerical study of such pyrotechnic train configuration is seldom reported because proper modeling of the full process requires precise capturing of the shock wave attenuation in the gap prior to triggering a full detonation of high explosive and accurate description of the high strain rate dynamics of the explosively loaded inert confinements. We apply a Eulerian level-set based multimaterial hydrocode with reactive flow models for pentolite donor and heavily aluminized RDX as acceptor charge. The complex shock interaction, critical gap thickness, acoustic impedance, and go/no-go characteristics of the gap test are quantitatively investigated.

Structural Integrity Assessment of Helicopter Composite Rotor Blade by Analyzing Bird-strike Resistance (조류충돌 해석을 통한 헬리콥터 복합재 로터 블레이드 구조 건전성 평가)

  • Park, Jehong;Jang, Jun Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.8-14
    • /
    • 2019
  • Bird-strike is one of the most important design factors for safety in the aviation industry. Bird-strikes have been the cause of significant damage to aircraft and rotorcraft structures and the loss of life. This study used DYTRAN software to simulate the transient response of an Euler-Lagrangian composite helicopter blade that has been impacted by a bird. The Arbitrary Lagrangian Eulerian (ALE) method and a suitable equation of state were applied to model the bird. ALE was applied to the bird-strike analysis due to the large difference between the properties of the blade and bird. The debris of the bird was assumed to be a fluid and applied as Euler elements after the collision. Through the analysis of bird impacts, the leading-edge of the rotor blade (50.8 mm) was used to identify a positive margin of 1.18 based on the TSAI-FILL criteria. The results are assessed to be sufficiently reliable and may be evaluated to replace tests with various analysis conditions. The structural stability of the rotor blade could be assessed by applying various load conditions and different modeling methods in the future.

Atmospheric Studies Using a Three-Dimensional Eulerian Model in Kyongin Region (3차원 오일러리안 확산모델을 이용한 경인산단권역의 대기거동 해석)

  • Song, Dong-Woong
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • The numerical modeling and comparison with observations are performed to find out the detailed structure of meteorology and the characteristic of related dispersion phenomena of the non-reactive air pollutant at Kyoungin region, South Korea, where several industrial complex including Siwha, Banwol and Namdong is located. MM5 (Fifth Generation NCAR/Penn State Mesoscale Model), 3-D Land/sea breeze model and 3-D diagnostic meteorological model have been utilized for the meteorological simulation for September, 2002 with each different spatial resolution, while 3-D Eulerian air dispersion model for the air quality study. We can see the simulated wind field shows the very local circulation quitely well compared with in-site observations in shoreline area with complex terrains, at which the circulation of Land/sea breeze has developed and merged with the mountain and valley breeze eventually. Also it is shown in the result of the dispersion model that the diurnal variation and absolute value of daily mean $SO_2$ concentrations have good agreement with observations, even though the instant concentration of $SO_2$ simulated overestimates around 1.5 times rather than that of observation due to neglecting the deposition process and roughly estimated emission rate. This results may indicate that it is important for the air quality study at shoreline region with the complex terrain to implement the high resolution meteorological model which is able to handle with the complicate local circulation.

A CFD Study on the Combustion Pressure Oscillation by a Location of a Pressure Transducer inside Closed Vessel (밀폐용기 연소실험 시 센서위치에 따라 변화하는 압력 진동에 대한 수치적 연구)

  • Han, Doo-hee;Ahn, Gil-hwan;Ryu, Byung-tae;Sung, Hong-gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.66-73
    • /
    • 2018
  • A computational fluid dynamics simulation of pyrotechnic material combustion inside a cylindrical closed vessel was carried out using the Eulerian-Lagrangian method. The 5th order upwind WENO scheme and the improved delayed detached eddy turbulence model were implemented to capture shock waves. The flow structure was analyzed inside the cylindrical vessel with a pressure sensor installed at the side wall center. The analysis revealed that the pressure oscillated because of the shock wave vibration. Additionally, the simulation results with four different sensor tab depths implied that, inside the sensor tab, eddies were generated by the excessively large gap between the sensor diaphragm and the side wall. These eddies caused irregularity to the measured time-pressure curve, which is an undesirable characteristic.

Semi-rigid Elasto-Plastic Post Buckling Analysis of Space Frame by Using the Explicit Arc-Length Method (명시적 호장법을 이용한 공간프레임의 반강접 탄소성 후좌굴 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.535-546
    • /
    • 2011
  • In this paper, semi-rigid elasto-plastic post-buckling analysis of a space frame was performed using various explicit arc-length methods. Various explicit arc-length methodsand a large-deformation and small-strain elasto-plastic 3D space frame element with semi-rigid connections and plastic hinges were developed. This element can be appliedto both explicit and implicit numerical algorithms. In this study, the Dynamic Relaxation method was adopted in the predictor and corrector processesto formulate an explicit arc-length algorithm. The developed "explicit-predictor" or "explicit-corrector" were used in the elasto-plastic post-buckling analysis. The Eulerian equations for a beam-column with finite rotation, which considers the bowing effects, were adopted for the elastic system and extended to theinelastic system with a plastic hinge concept. The derived tangent stiffness matrix was asymmetrical due to the finite rotation. The joint connection elements were introduced for semi-rigidity using a static condensation technique. Semi-rigid elasto-plastic post-buckling analyses were carried out to demonstrate the potential of the developed explicit arc-length method and advanced space frame element in terms of accuracy and efficiency.