• Title/Summary/Keyword: 오리피스

Search Result 445, Processing Time 0.028 seconds

Convergent Investigation with Flow Analysis by Type of Shock Absorber Orifice (쇽업소버 오리피스의 유형별 유동해석으로의 융합적 고찰)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.195-200
    • /
    • 2020
  • In this study, the flow analyses by type of shock absorber orifice were carried out. A shock absorber is indispensable for the ride comfort that is important at the standard of a good car. As the analysis procedure, the actual speed of the shock absorber was set as the flow rate when the cylinder was advanced. And the flow analysis results on models A, B and C of shock absorber models were compared with each other. As the examination on the flow orifice in the vicinity of each model through the analysis of flow, the performance of shock absorber were recognized. On the whole, model A had the fastest flow rate and also had the largest flow rate. Model B had the slowest flow rate and the flow rate features of models B and C with the same number of orifices were similar. Through this study, it is possible to see which shock absorber orifice model facilitates the flow inside the cylinder and increases the ride comfort. It is seen that this analysis result on the flow analyses by type of shock absorber orifice can be applied by converging with the field of design.

Effects of Orifice Length on Helmholtz Resonator (음향공 오리피스 길이 변화에 따른 감쇠 효과)

  • Song, Jae-Gang;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.36-39
    • /
    • 2008
  • Combustion instability is one of the most difficult problems in the development of liquid rocket engines. One of the damping devices for combustion instability is helmholtz resonator. Orifice length is one of factors for designing it. In this study, effects of orifice length are investigated by an experimental tests and a linear acoustic analysis. Damping capacity was improved by the increase of the length of resonator. And the results of an experimental tests and a linear acoustic analysis are showed similar tendency. Also, effects of supplied SPL(sound pressure level) are investigated and the results show that nonlinear effects are increase by the increase of supplied SPL.

  • PDF

Steady Characteristic Change of Hydraulic Control Orifice according to Opening and Configuration Parameters (수력제어용 오리피스의 개도 및 형상 변수에 따른 정상저항 특성의 변화)

  • Kim, Sang-Min;Kim, Geon-Woong;Ko, Tae-Ho;Kim, Hyung-Min;Yoon, Woo-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.329-334
    • /
    • 2009
  • The Study of steady performance of orifice must be precede before study of dynamic characteristics with configuration change. So, orifice performance with change of diameter ratio, thickness, expansion and angle predicted by CFD. The analysis algorithm is SIMPLEC. And PRESTO, QUICK scheme is used for dicretization. The $k-{\omega}$ STS turbulent model also used. The discharge coefficient is rapidly increased with increasing of diameter ratio and slowly decreased after rapidly increasing with orifice thicken. In case of expansion angle, the discharge coefficient is the smallest at $45^{\circ}$ of the angle.

  • PDF

Pressure-Oscillation Damping Characteristics of an Orifice in a Fluid Feeding Line with Mean Flow (평균유동이 있는 유체 공급배관내 오리피스의 압력섭동 감쇠 특성)

  • Lee, Tae-Young;Kim, Chul-Jin;Sohn, Chae-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.359-362
    • /
    • 2009
  • Damping characteristics of pressure oscillation induced by an orifice in fluid feeding line for are investigated numerically and experimentally. Assuming small pressure oscillation, acoustic damping effect of orifice is confirmed experimentally, and with the mean flow, damping characteristics of an orifice are investigated numerically. When an orifice is installed at the node of pressure oscillation corresponding to the anti-node of velocity oscillation, suppression of pressure oscillation is maximized and with the mean flow, the resonant frequency is decreased. And, it is found that the optimal position of an orifice for damping shouled be changed.

  • PDF

Flow Measurement of Liquid Oxygen using the Multi-hole Orifice (다공 오리피스를 이용한 액체산소 유량측정)

  • Lim, Hayoung;Lee, Jisung;Kim, Junghan;Noh, Yongoh
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1031-1035
    • /
    • 2017
  • To measure the flow rate of the liquid oxygen, two types of multi-hole orifice meter were prepared. The $C_d$ of the orifice meter was determined by the flow test using water. After performing the liquid oxygen flow test for orifice meter and Coriolis meter, the mass flow rate was calculated using the $C_d$. The error of the mass flow rate compare to Coriolis meter, A-type(1/2") was below than 0.4%, B-type(3/4") was below than 0.8%.

  • PDF

Study on the Energy Separation Characteristics of the $100Nm^3$/hr Level Vortex Tube ($100Nm^3$/hr급 볼텍스튜브의 온도 분리 특성 연구)

  • Kim, Chang-Su;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.996-999
    • /
    • 2010
  • 고압의 가스를 이용하여 고온 가스와 저온 가스를 분리하거나 입자상 물질의 분리에 사용할 수 있는 장치인 볼텍스 튜브의 에너지 분리 특성을 파악하기 위하여 $100Nm^3$/hr급 볼텍스 튜브를 제작하고 이에 대한 실험을 진행하였다. 저온측의 유량비와 오리피스 직경 및 볼텍스 튜브의 길이가 온도에 미치는 영향을 분석하였다. 오리피스 직경 0.6D에서 최적의 온도 분리 효과를 나타내었으며, 0.8D의 경우 그 효과가 미미하였다. 또 한 오리피스 직경이나 길이에 관계없이 저온유량비가 약 0.9부근에서 고온측의 온도가 최고점을 나타내었고, 볼텍스 튜브 길이는 저온측 온도 변화에 미미한 영향을 미치나, 오리피스 직경의 변화는 최저 온도점이 나타나는 저온 유량비에 상당한 영향을 미쳤다. 본 연구의 결과는 $100Nm^3$/hr급 볼텍스 튜브의 최적화를 위한 기초자료로 활용될 수 있을 것이다.

  • PDF

Analysis on the Internal Flow of the Hydraulic Dual Chambers Applying Various Orifice (다양한 오리피스를 이용한 연결형 공압 챔버 내부 유동 해석)

  • Cho, Kihong;Park, Jungho;Kim, Euiyong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.58-64
    • /
    • 2014
  • Hydraulic dual chamber, as the simulator for a dual pulse rocket motor, was tested by a high pressure device with various orifice-hole size being applied. Pressure difference occurs between 1st chamber and 2nd chamber depending on area ratio of the orifice to nozzle throat. Studying a design configuration of the orifice is essential to the motor development because pressure difference severely affects the rocket motor performance. It is noticed in this study that energy dissipation is caused by the vortex flow originating from the orifice as the 2nd chamber is operated. The flow field is simulated by a commercial computational fluid dynamics program, ANSYS FLUENT V14.5.

Effects of Orifice Internal Flow on Transverse Injection into Subsonic Crossflows (아음속 유동장에 수직분사시 오리피스 내부유동 효과에 대한 연구)

  • 김정훈;안규복;윤영빈
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.28-39
    • /
    • 2003
  • Effects of the orifice internal flow such as cavitation and hydraulic flip on transverse injection into subsonic crossflows have been studied. The liquid column breakup length and the liquid column trajectory were measured by changing the orifice diameter (d), the orifice length/orifice diameter (L/d), the injection pressure and the shapes (sharp and round) of orifice entrance, and were compared with previous results. It is found that cavitation bubbles, which occur inside the sharp-edged orifice, make the liquid jet very turbulent and especially in the orifices with L/d = 5 hydraulic flip appear as cavitation bubbles are emitted from the orifice. The breakup length is shorter as cavitation bubbles grows and hydraulic flip appears. However, the liquid column trajectories normalized by the effective diameter and the effective momentum ratio have a similar tendency irrespective of cavitation and hydraulic flip.

Design of Sharp-edged Type Damping Orifices for an Aircraft Door Damper (민항기 door damper용 칼날형 댐핑 오리피스의 설계)

  • Hong, Yeh-Sun;Kwon, Yong-Cheol;Kim, Chong-Hyeok;Park, Seol-Hye;Park, Ho-Yeol;Kim, Sang-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1080-1085
    • /
    • 2012
  • In this paper a sharp-edged type damping orifice for an aircraft door damper were designed, where the dynamic viscosity of working fluid were assumed to change up to 400cSt. The discharge coefficient of the damping orifice were investigated by CFD analyses and experiments. In particular, the influences of orifice diameter, edge angle, flow direction and the Reynolds number were taken into consideration. Based on this, it has been deduced how high Coulomb friction forces of damper seals is to be allowed to meet the performance criterion with respect to the orifice size.

Effect of Orifice Type and Number on the Mixing and Flow Characteristics in In-line Mixer (관내 혼화장치의 오리피스 형상과 개수에 따른 혼화 및 유동특성)

  • Jeong, Seon Yong;Chung, Won Sik;Rhi, Seok Ho;Lee, Kye Bock;Lee, Dae Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.6-13
    • /
    • 2017
  • This study examines the effect of the type and number of orifices in an in-line mixer to improve the mixing performance and pressure loss. Recently, in-line non-power-consuming mixers have been increasingly used to complement mechanical mixers, which have a long dwell time, noise, excessive energy consumption, and high maintenance costs. An in-line mixer with an orifice for efficient mixing in water treatment was examined by numerical analysis using the commercial code FLUENT. The flow characteristics of pressure loss and velocity distribution within the mixer and the mixing efficiency were compared with and without the orifices. The CFD results show that the mixing efficiency was improved, but the pressure loss was increased by the in-line mixer with an orifice. A sensitivity study was also done on the principal parameters.