• 제목/요약/키워드: 예혼합 화염

검색결과 324건 처리시간 0.028초

저선회 모델 연소기의 연소특성 및 선회각도 영향 (Effect of Swirl Angles and Combustion Characteristics of Low Swirl Model Combustor)

  • 정황희;이기만
    • 한국추진공학회지
    • /
    • 제20권4호
    • /
    • pp.40-49
    • /
    • 2016
  • 본 연구의 목적은 저선회 모델 연소기에서 저선회 연소의 특성을 확인하는 것이다. 이를 위해 선회각도에 따른 화염의 형상 및 안정화 영역, 배기성능에 대한 평가가 실험적으로 수행되었다. 저선회 연소의 큰 특징은 화염이 부상되어 존재하게 되는데, 이러한 부상화염은 확대유동과 예혼합 화염의 전파특성이 절묘하게 결합되어 발생하게 된다. 본 연소기에서 이러한 부상화염의 특징을 속도 유동장을 통하여 확인하였으며 화염을 가시화하여 나타내었다. 가시화된 화염은 열용량과 당량비에 따라 분류하였다. 선회각도의 변화에 따른 연구를 통해 선회각도만으로도 희박 가연한계를 확장시킬 수 있음을 보였다. 또한 선회각도가 증가할수록 혼합이 향상되고 체류시간이 짧아져 NOx와 CO의 배출이 감소되는 것으로 확인되었다.

연소공학의 기초연구와 그 응용 (Fundamental researches on combustion and applications)

  • 신현동
    • 오토저널
    • /
    • 제11권4호
    • /
    • pp.13-18
    • /
    • 1989
  • 연소 효율, 배기 특성을 제어하기 위하여 연소 반응대의 상세한 구조를 이해해야 하며 이를 토대로 열역학적 모델을 만들 필요가 있다. 본 고에서는 이미 여러 연구자들에 의하여 제안된 예혼합 화염의 반응대 구조에 대한 열적 모델과 확산모델을 소개하고 각각에 대한 응용과 가능성에 대하여 저자의 의견을 제시하였다.

  • PDF

Dynamic Sub-grid Scale G-방정식 모델에 의한 평행평판간 난류의 예 혼합 연소에 관한 대 와동 모사 (Large eddy simulation of turbulent premixed flame with dynamic sub-grid scale G-equation model in turbulent channel flow)

  • 고상철;박남섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.849-854
    • /
    • 2005
  • The laminar flame concept in turbulent reacting flow is considered applicable to many practical combustion systems For turbulent premixed combustion under widely used flamelet concept, the flame surface is described as an infinitely thin propagating surface that such a Propagating front can be represented as a level contour of a continuous function G. In this study, for the Purpose of validating the LES of G-equation combustion model. LES of turbulent Premixed combustion with dynamic SGS model of G-equation in turbulent channel flow are carried out A constant density assumption is used. The Predicted flame propagating speed is goof agreement with the DNS result of G. Bruneaux et al.

CH-OH PLIF와 Stereoscopic PIV계측법을 이용한 난류예혼합화염의 관찰 (Simultaneous Measurement of CH-OH PLIF and Stereoscopic PIV in Turbulent Premixed Flames)

  • 최경민
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.102-103
    • /
    • 2004
  • Simultaneous CH and OH planar laser induced fluorescence(PLIF) and stereoscopic particle image velocimetry(PIV) measurements have been developed to investigate the local flame structure of turbulent premixed flames. The developed simultaneous two radical concentrations and three component velocity measurements on a two-dimensional plane was applied for relatively high Renolds number turbulent premixed flames in a swirl stabilized combustor. All measurements were conducted for methane-air premixed flames in the corrugated flamelets regime. Strong three-dimensional fluctuation implies that misunderstanding of the flame/turbulent interactions would be caused by the analysis of two-component velocity distribution in a cross section. Furthermore, comparisons of CH-OH PLIF and three-component velocity field show that the burned gases not always have high-speed velocity in relatively high Renolds number turbulent premixed flame.

  • PDF

메탄-수소-공기 예혼합기의 연소특성(II) (Combustion Characteristics of Methane-Hydrogen-Air Premixture(II))

  • 김봉석;이영재
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.156-167
    • /
    • 1996
  • The present work is a continuation of our previous study to investigate the effects of parameters such as equivalence ratio, hydrogen supplement rate and initial pressure on combustion characteristics in a disk-shaped constant volume combustion chamber. The main results obtained from the study can be summarized as follows. The flames in near stoichiometric mixture of methane-air are propagated with a spherical shape, but in excess rich or lean mixtures are propagated with a elliptical shape. And, they are changed to an unstable elliptical shape flame with very regular cells by increasing the hydrogen supplement rate. Also, flame is sluggishly propagated at increased initial pressure in combustion chamber. Volume fraction of burned gas and flame radius as the combustion characteristics are increased by increasing the hydrogen supplement rate, especially at the combustion middle period, but then are slowly increased by increasing the initial pressure.

  • PDF

부분 예혼합 화염의 예열공기 연소특성 (Preheated Air Combustion Characteristics of Partially Premixed Flame)

  • 이승영;이종호;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.65-70
    • /
    • 2001
  • OH radical and NOx have been measured in a methane-air partially premixed flame using PLIF technique to define preheated air combustion characteristics. The temperature of mixture is determined by 300K, 400K, 600K and 800K below the auto-ignition temperature respectively. Flame height increases as equivalence ratio increased. As initial enthalpy is supplied, the radius of flame was increased and much amount of yellow flame in rich equivalence ratio was observed. This is due to the faster burning velocity. Also initial oxidization begins earlier as the initial temperature of mixture increased. It means that height of premixed flame front decreased. This phenomenon can be observed OH PLIF image. The qualitative analysis of OH concentration in the PLIF image shows that overall OH concentration increases with equivalence ratio and the initial temperature of mixture increased. At the preheating temperature goes up, axial gradient of OH concentration is less steep than that of lower temperature condition. This may identify that combustion reacts continuously, so preheated air combustion can evade the local heating and make high temperature indiscriminately in the overall reaction zone.

  • PDF

고온ㆍ고압 정적 연소기내 난류 프로판 예혼합 화염의 매연생성에 관한 연구 (A Study on Soot Formation of Turbulent Premixed Propane Flames in n Constant-Volume Combustor at High Temperatures and High Pressures)

  • 배명환
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.1-9
    • /
    • 2001
  • The soot yield has been studied by a premixed propane-oxygen-inert gas combustion in a specially designed disk-type constant-volume combustion chamber to investigate the effects of pressure, temperature and turbulence on soot formation. Premixtures are simultaneously ignited by eight spark plugs located on the circumference of chamber at 45 degree intervals in order to observe the soot formation under high pressures. The eight flames converged compress the end gases to a high pressure. The laser schlieren and direct flame photographs for observation field with 10 mm in diameter are taken to examine into the behaviors of flame front and gas flow in laminar and turbulent combustion. The soot volume fraction in the chamber center during the final stage of combustion at the highest pressure is measured by the in situ laser extinction technique and simultaneously the corresponding burnt gas temperature by the two-color pyrometry method. The pressure and temperature during soot formation are changed by varying the initial charge pressure and the volume fraction of inert gas compositions, respectively. It is found that the soot yield increases with dropping temperature and rising pressure at constant equivalence ratio, and that the soot yield of turbulent combustion decreases in comparison with that of laminar combustion because the burnt gas temperature increases with the drop of heat loss.

  • PDF

튜브 내 하향 전파하는 예혼합 화염의 이차 열음향 불안정성 천이에 관한 실험적 연구 (Experimental Study of Transition to Secondary Acoustic Instability at Downward-Propagating Premixed Flame in a Tube)

  • 박주원;김대해;박대근;윤성환
    • 해양환경안전학회지
    • /
    • 제26권7호
    • /
    • pp.915-921
    • /
    • 2020
  • 연소실 내 공조현상으로 인해 발생되는 열음향 불안정성은 안정적인 연소시스템을 구현하기 위해 해결해야 하는 고질적인 문제로 제기되어 왔다. 열음향 불안정성은 크게 1차 2차 열음향 불안정성으로 나뉘며, 본 연구에서는 열음향 불안정성 중 2차 열음향 불안정성의 천이에 관해 열손실이 미치는 영향에 대한 실험적 연구를 진행하였다. 2차 열음향 불안정성을 발생시키기 위해 한쪽 끝이 열린 1/4 파장 공명기를 채택하여 수직으로 설치하였고, 공명기 내부에는 예혼합 가스를 주입하였다. 또한 공명기 상단으로 발생하는 열손실 효과를 비교하기 위해 추가적으로 외부 동축류 관을 설치하였다. 연료 농후조건의 예혼합 가스만을 채택하여 주입하였기 때문에 동축관에 주입되는 기체에 따라 공명기 상부에 추가적인 확산화염이 형성될 수 있다. 그 결과 확산화염이 발생되었을 경우 공명기 상단으로의 열손실이 감소하며 2차 열음향 불안정성이 발현되었으며, 확산화염이 억제되어 공명기 상단으로의 열손실이 증가하였을 경우 2차 열음향 불안정성의 발현이 억제되는 결과를 도출하였다.

유동 섭동에 의한 난류예혼합화염의 열발생 모델에 관한 연구 (A Heat Release Model of Turbulent Premixed Flame Response to Acoustic Perturbations)

  • 조주형;백승욱
    • 대한기계학회논문집B
    • /
    • 제32권6호
    • /
    • pp.413-420
    • /
    • 2008
  • The unsteady heat release characteristics play a significant role in combustion instabilities observed in low emissions gas turbine combustors. Such combustion instabilities are often caused by coupling mechanisms between unsteady heat release rates and acoustic perturbations. A generalized model of the turbulent flame response to acoustic perturbations is analytically formulated by considering a distributed heat release along a curved mean flame front and using the flame's kinematic model that incorporates the turbulent flame development. The effects of the development of flame speed on the flame transfer functions are examined by calculating the transfer functions with a constant or developing flame speed. The flame transfer function due to velocity fluctuation shows that, when a developing flame speed is used, the transfer function magnitude decreases faster with Strouhal number than the results with a constant flame speed at low Strouhal numbers. The flame transfer function due to mixture ratio fluctuation, however, exhibits the opposite results: the transfer function magnitude with a developing flame speed increases faster than that with a constant flame speed at low Strouhal numbers. Oscillatory behaviors of both transfer function magnitudes are shown to be damped when a developing flame speed is used. Both transfer functions also show similar behaviors in the phase characteristics: The phases of both transfer functions with a developing flame speed increase more rapidly than those with a constant flame speed.

G 방정식을 이용한 실린더 챔버 내부 둔각물체 주위의 난류 예 혼합 화염 해석 (Application of G-equation to large eddy simulation of turbulent premixed flame around a bluff body inside a cylindrical chamber)

  • 최창용;박남섭;고상철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권4호
    • /
    • pp.391-398
    • /
    • 2005
  • In this investigation, turbulent premixed combustion and flame front propagation in a gas turbine combustion chamber is studied. Direct numerical simulation of turbulent reacting flows demands extremely high computational resources, especially in more complicated geometry. The alternative choice may be left for Large Eddy Simulation (LES) by which only large scales are solved directly. In combustion problems, capturing the large scales' behavior without solving the details of small scales is a difficult task. Using a transport equation for description of the flame front propagation and therefore avoiding the calculation of inner flame structure is the basic idea of this study. For this purpose. the so-called G-equation has been used by which any iso-level of the G variable provides the flame location. A comparison with the experiment indicates that the present method can predict a turbulent velocity field and also capture a instantaneous 3-dimensional flame structure.