• Title/Summary/Keyword: 예측 기법

Search Result 6,897, Processing Time 0.036 seconds

Predicting Snow Damage and Suggesting Improvement Plans Using Deep Learning (딥러닝을 이용한 대설피해액 예측 및 개선방안 제안)

  • Lee, HyeongJoo;Chung, Gunhui
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.485-485
    • /
    • 2021
  • 최근 세계적인 기상이변으로 자연재해의 발생빈도 증가는 물론 이로 인한 피해가 점차 다양화 및 대형화되어 가고 있는 추세이다. 재난으로 인한 피해는 발생지역 피해뿐만 아니라 국가 경제 전반에 큰 영향을 미치는 특징이 있다. 우리나라의 자연재해 중 대설은 다른 자연재해에 비해 발생빈도는 낮지만 광역적인 피해를 유발하며, 피해 면적에 비해 피해액 규모가 크다. 또한 현재에는 강원권이 가장 취약한 것으로 취약성 분석 결과에서 보여주지만, 미래에는 강원권, 충청권, 호남권을 연결하는 축으로 취약지역이 확대될 것으로 전망된다. 본 연구에서는 현재 사회 전반에서 다양하게 활용되고 있는 머신러닝 기법을 이용하여 우리나라 대설피해액을 예측하는 대설피해 예측모형을 개발하고자 하였다. 머신러닝 기법으로는 랜덤포레스트, 서포트 벡터 머신, 인공신경망 기법을 이용하였고, 모형에 사용한 변수는 기상관측자료, 사회·경제적 요소 등을 활용하여 모형을 개발하였다. 결과적으로 기존연구에서 다중회귀모형을 이용하여 개발된 예측모형과 본 연구에서 3개의 머신러닝 기법으로 개발된 예측모형의 예측력을 비교 분석하였고, 예측력이 가장 높은 모형을 제시하였다. 본 연구결과를 활용하여 모형의 개선 및 데이터 품질 개선이 이루어진다면 향후 대설피해에 대한 개략적인 대비가 가능할 것으로 기대된다.

  • PDF

The Bi-Cross Pretraining Method to Enhance Language Representation (Bi-Cross 사전 학습을 통한 자연어 이해 성능 향상)

  • Kim, Sung-ju;Kim, Seonhoon;Park, Jinseong;Yoo, Kang Min;Kang, Inho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.320-325
    • /
    • 2021
  • BERT는 사전 학습 단계에서 다음 문장 예측 문제와 마스킹된 단어에 대한 예측 문제를 학습하여 여러 자연어 다운스트림 태스크에서 높은 성능을 보였다. 본 연구에서는 BERT의 사전 학습 문제 중 다음 문장 예측 문제에 대해 주목했다. 다음 문장 예측 문제는 자연어 추론 문제와 질의 응답 문제와 같이 임의의 두 문장 사이의 관계를 모델링하는 문제들에 성능 향상을 위해 사용되었다. 하지만 BERT의 다음 문장 예측 문제는 두 문장을 특수 토큰으로 분리하여 단일 문자열 형태로 모델에 입력으로 주어지는 cross-encoding 방식만을 학습하기 때문에 문장을 각각 인코딩하는 bi-encoding 방식의 다운스트림 태스크를 고려하지 않은 점에서 아쉬움이 있다. 본 논문에서는 기존 BERT의 다음 문장 예측 문제를 확장하여 bi-encoding 방식의 다음 문장 예측 문제를 추가적으로 사전 학습하여 단일 문장 분류 문제와 문장 임베딩을 활용하는 문제에서 성능을 향상 시키는 Bi-Cross 사전 학습 기법을 소개한다. Bi-Cross 학습 기법은 영화 리뷰 감성 분류 데이터 셋인 NSMC 데이터 셋에 대해 학습 데이터의 0.1%만 사용하는 학습 환경에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 5점 가량의 성능 향상이 있었다. 또한 KorSTS의 bi-encoding 방식의 문장 임베딩 성능 평가에서 Bi-Cross 사전 학습 기법 적용 전 모델 대비 1.5점의 성능 향상을 보였다.

  • PDF

Comparative Analysis of Parameter Estimation Methods in Estimation of Spatial Distribution of Probability Rainfall (확률강우량의 공간분포추정에 있어서 매개변수 추정기법의 비교분석)

  • Seo, Young-Min;Yeo, Woon-Ki;Jee, Hong-Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.413-413
    • /
    • 2011
  • 강우의 공간분포에 대한 신뢰성 있는 추정은 수자원 해석 및 설계에 있어서 필수적인 요소이다. 강우장의 공간변동성에 대한 고해상도 추정은 홍수, 특히 돌발홍수의 원인이 되는 국지성 호우의 확인 및 분석에 있어서 중요하다. 또한 강우의 공간 변동성에 대한 고려는 면적평균강우량 추정의 정확도를 향상시키는데 있어서 중요하며, 강우-유출모델의 모의결과에 대한 신뢰도를 향상시키는데 큰 영향을 미친다. 최근 공간자료에 대한 공간분포예측에 있어서 공간상관성을 고려할 수 있는 공간통계학적 기법의 적용이 증가하고 있으며, 이러한 공간통계학적 기법의 적용에 있어서 신뢰성 있는 모델 매개변수의 추정 및 불확실성 평가는 공간분포 예측결과에 대한 신뢰성을 향상시키는데 중요한 역할을 한다. 외국의 경우 공간분포예측 및 모의, 매개변수의 불확실성 평가 등과 관련하여 활발한 연구가 이루어지고 있는 반면 국내 수자원 분야에서는 아직까지 활발한 연구가 이루어지고 있지 않은 실정이다. 따라서 본 연구에서는 계층구조로 구성된 가우시안 공간선형혼합모델을 적용하여 확률강우량의 공간분포를 추정함에 있어서 모델 매개변수에 대한 추정기법을 비교하였으며, 매개변수 추정기법으로서 경험베리오그램에 대한 곡선적합기법인 보통최소제곱법 및 가중최소제곱법, 우도함수를 기반으로 하는 최우도법 및 REML과 같은 기존의 매개변수 추정기법들과 최근 공간통계학 분야에서 적용이 증가하고 있는 Bayesian 기법을 비교하였다. 이로부터 매개변수 추정기법 간의 매개변수 추정치에 대한 정량적 비교결과를 제시하였으며, Bayesian 기법의 적용을 통해 매개변수에 대한 불확실성 추정결과를 제시하였다. 이러한 결과들은 확률강우량의 공간분포 추정에 있어서 공간예측모델의 매개변수 추정 및 예측에 대한 신뢰성을 향상시킬 수 있는 기초자료로 활용될 수 있을 것이다.

  • PDF

Prediction of English Premier League Game Using an Ensemble Technique (앙상블 기법을 통한 잉글리시 프리미어리그 경기결과 예측)

  • Yi, Jae Hyun;Lee, Soo Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.5
    • /
    • pp.161-168
    • /
    • 2020
  • Predicting outcome of the sports enables teams to establish their strategy by analyzing variables that affect overall game flow and wins and losses. Many studies have been conducted on the prediction of the outcome of sports events through statistical techniques and machine learning techniques. Predictive performance is the most important in a game prediction model. However, statistical and machine learning models show different optimal performance depending on the characteristics of the data used for learning. In this paper, we propose a new ensemble model to predict English Premier League soccer games using statistical models and the machine learning models which showed good performance in predicting the results of the soccer games and this model is possible to select a model that performs best when predicting the data even if the data are different. The proposed ensemble model predicts game results by learning the final prediction model with the game prediction results of each single model and the actual game results. Experimental results for the proposed model show higher performance than the single models.

Inter-Species Validation for Domain Combination Based Protein-Protein Interaction Prediction Method

  • Jang, Woo-Hyuk;Han, Dong-Soo;Kim, Hong-Soog;Lee, Sung-Doke
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.243-248
    • /
    • 2005
  • 도메인 조합에 기반한 단백질 상호작용 예측 기법은 효모와 같은 특정 종에 대하여 우수한예측 정확도를 보이는 것으로 알려졌으나, 인간과 같은 고등 생명체의 단백질에 대한 상호작용 예측을 수행하기 위하여는 여러종에 대한 기법의 적절성검증과 최적의 학습집단 구성 방안에 대한 연구가 선행되어야 한다. 본 논문에서는, 초파리 단백질을 이용한 예측 정확도 검증으로 도메인 조합 기법의 일반화 가능성을 타진 하고 이종간의 상호작용 예측실험 및 정확도 검증을 통하여 비교적 연구가 덜 되어진 종의 단백질 상호작용 예측을 위한 학습집단 구성 방법에 대하여 기술한다. 초파리 실험에서는 10351개의 상호작용이 있는 단백질 쌍 가운데, 80%와 20%를 각각 학습집단 및 실험집단으로 사용하였으며, 상호작용이 없는단백질 쌍의 학습집단은 1배에서 5배까지 변화시키면서 예측 정확도를 관찰하였다. 이 결과77.58%의 민감도와 92.61%의 특이도를 확인하였다. 이종간의 상호작용 예측 실험은 효모, 초파리, 효모, 초파리에 해당하는 학습집단 각각을 바탕으로 Human, Mouse, E. coli, C. elegans 등의 단백질 상호작용 예측을 수행하였다. 실험 곁과 학습집단의 도메인이 실험집단의 도메인과 많이 겹칠수록 높은 정확도를 보여주었으며, 도메인 집단간의 유사도를 나타내기 위해 고안한 Domain Overlapping Rate(DOR) 는 상호작용 예측 정확도의 중요한 요소임을 찾아내었다.

  • PDF

A selection of optimal method for bias-correction in Global Seasonal Forecast System version 5 (GloSea5) (전지구 계절예측시스템 GloSea5의 최적 편의보정기법 선정)

  • Son, Chanyoung;Song, Junghyun;Kim, Sejin;Cho, Younghyun
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.8
    • /
    • pp.551-562
    • /
    • 2017
  • In order to utilize 6-month precipitation forecasts (6 months at maximum) of Global Seasonal Forecast System version 5 (GloSea5), which is being provided by KMA (Korea Meteorological Administration) since 2014, for water resources management as well as other applications, it is needed to correct the forecast model's quantitative bias against observations. This study evaluated applicability of bias-correction skill in GloSea5 and selected an optimal method among 11 techniques that include probabilistic distribution type based, parametric, and non-parametric bias-correction to fix GloSea5's bias in precipitation forecasts. Non-parametric bias-correction provided the most similar results with observed data compared to other techniques in hindcast for the past events, yet relatively generated some discrepancies in forecast. On the contrary, parametric bias-correction produced the most reliable results in both hindcast and forecast periods. The results of this study are expected to be applicable to various applications using seasonal forecast model such as water resources operation and management, hydropower, agriculture, etc.

Predict Solar Radiation for Photovoltaic System of Maritime City (해양도시의 태양광 발전을 위한 일사량 예측기법)

  • Won, Jong-Min;Do, Geun-Yeong;Lee, Jeong-Jae;Jeong, Su-Yeon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.197-198
    • /
    • 2010
  • 태양광발전량의 예측에 대해 많은 선행연구가 진행되었으나 연간 또는 월별 총발전량을 비교하기 위한 것이 주류였기 때문에 연간 또는 월별의 평균일사량을 바탕으로 발전량을 예측 비교하고 있다. 그러나 도시차원에서 전력생산 및 공급의 최적화를 위해서는 시간 및 기상에 따란 변화하는 일사량과 그에 따른 발전량을 예측하여 효율적인 전력생산 공급계획을 수립할 필요가 있지만 기상예보에는 일사량 정보가 포함되어 있지 않기 때문에 기상예보에 제공되는 운량을 이용하여 일사량을 예측할 수 있는 기법개발이 절실하다. 본 연구에서는 해양도시인 부산을 대상으로 과거의 기상데이터 중 운량과 일사량을 이용하여 일사량 예측기법을 제안하고자 한다.

  • PDF

A Study on Spare Parts Demand Forecasting Using Artificial Neural Network (인공신경망을 이용한 수리부속 간헐적 수요예측)

  • Oh, Byung-Hoon;Kim, Hyeon-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.824-826
    • /
    • 2017
  • 수요예측은 적정 재고를 유지하기 위해 선행되어야 할 중요한 부분이라 할 수 있다. 수요예측의 정확도 향상이 적정한 재고를 유지하기 위한 토대가 된다. 하지만 수요예측을 어렵게 만드는 주요 원인 중 하나인 간헐적인 수요는 기존 시계열 기법으로 예측하는데 있어 어려움이 크다. 본 연구에서는 인공지능의 한 기법인 인공신경망을 적용하여 간헐적 품목에 대한 수요예측을 실시하였다. 6개의 기법을 통해 실험을 실시한 결과 인공신경망이 가장 오차가 적은 우수한 결과를 나타냈다.

A Comparative Analysis for the knowledge of Data Mining Techniques with Experties (Data Mining 기법들과 전문가들로부터 추출된 지식에 관한 실증적 비교 연구)

  • 김광용;손광기;홍온선
    • Journal of Intelligence and Information Systems
    • /
    • v.4 no.1
    • /
    • pp.41-58
    • /
    • 1998
  • 본 연구는 여러 가지 Data Mining 기법들로부터 도출된 지식과 AHP를 이용하여 도출된 전문가의 지식을 사용된 정보의 특성에 따라 조사하고, 이러한 각각의 지식들을 중심으로 부도예측 모형을 설계한 후, 각 모형의 특성 및 부도예측력에 대한 실증적 비교연구에 그 목적을 두고 있다. 사용된 Data Mining 기법들은 통계적 다중판별분석 모형, ID3 모형, 인공신경망 모형이며, 전문가 지식의 추출은 AHP를 사용하여 45명의 전문가로부터 부도와 관련하여 인터뷰 및 설문조사를 실시하였다. 특히 부도예측에 사용된 변수의 특성을 정량적 재무정보와 정성적 비재무정보로 나누어서 각 모형의 특성을 비교연구하였다. 연구결과 부도예측시 정성적정보의 중요성을 확인하였으며, 전문가의 지식을 기반으로한 AHP 모형이 위험예측모형으로 사용될 수 있음을 실증적으로 보여주었다.

  • PDF

Development of ensemble method for ultra-shortterm rainfall prediction using radar data (레이더자료를 이용한 초단기 강우 앙상블 예측 기법 개발)

  • Noh, Hui-Seong;Lee, Dong-Ryul;Hwang, Suk-Hwan;Kang, Sung-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.193-193
    • /
    • 2020
  • 집중호우로 인한 이재민 발생, 침수 등 많은 인명 및 재산 피해가 지속적으로 발생함에 따라, 홍수재해를 사전에 대응하는 다양한 방법에 대한 관심이 증가하고 있다. 본 연구에서는 레이더 반사도를 이용하여 강우의 이동방향과 이동속도를 추정하여 초단기 정량강우예측(QPF)이 가능한 기법을 개발하고, 2016년 태풍 차바 사상에 대하여 비슬산 레이더자료를 이용하여 분석을 실시하였다. 개발기법은 1단계 레이더 강우강도 앙상블 멤버 생성, 2단계 레이더 강우강도 이동속도 계산, 3단계 레이더 강우강도 앙상블 초단기 예보, 4단계 초단기 예보 검증의 과정으로 이루어진다. 본 연구결과물인 레이더 기반 초단기 강우예측자료는 수치예보기반 강우예측자료 및 다양한 레이더 기반 초단기예보자료들과 함께 강우예측율 향상에 기여할 것으로 판단된다.

  • PDF