DOI QR코드

DOI QR Code

A selection of optimal method for bias-correction in Global Seasonal Forecast System version 5 (GloSea5)

전지구 계절예측시스템 GloSea5의 최적 편의보정기법 선정

  • Received : 2017.05.23
  • Accepted : 2017.06.26
  • Published : 2017.08.31

Abstract

In order to utilize 6-month precipitation forecasts (6 months at maximum) of Global Seasonal Forecast System version 5 (GloSea5), which is being provided by KMA (Korea Meteorological Administration) since 2014, for water resources management as well as other applications, it is needed to correct the forecast model's quantitative bias against observations. This study evaluated applicability of bias-correction skill in GloSea5 and selected an optimal method among 11 techniques that include probabilistic distribution type based, parametric, and non-parametric bias-correction to fix GloSea5's bias in precipitation forecasts. Non-parametric bias-correction provided the most similar results with observed data compared to other techniques in hindcast for the past events, yet relatively generated some discrepancies in forecast. On the contrary, parametric bias-correction produced the most reliable results in both hindcast and forecast periods. The results of this study are expected to be applicable to various applications using seasonal forecast model such as water resources operation and management, hydropower, agriculture, etc.

2014년부터 기상청에서 현업으로 활용하고 있는 전지구 계절예측시스템 GloSea5의 최대 6개월 예측 강수량을 수자원 및 여러 응용분야에 활용하기 위해서는 예측모델이 가지는 관측자료와의 정량적인 편의를 보정할 필요가 있다. 본 연구에서는 GloSea5의 예측 강수량에서 나타나는 편의를 보정하기 위해 확률분포형을 활용한 편의보정기법, 매개변수 및 비매개변수적 편의보정기법 등 총 11개의 기법을 활용하여 계절예측모델의 적용성을 평가하고 최적의 편의보정기법을 선정하고자 하였다. 과거재현기간에 대한 편의보정 결과, 비매개변수적 편의보정기법이 다른 기법에 비해 가장 관측자료와 유사하게 보정하는 것으로 분석되었으나 예측기간에 대해서는 상대적으로 많은 이상치를 발생시켰다. 이와는 대조적으로 매개변수적 편의보정기법은 과거재현기간 및 예측기간 모두 안정된 결과를 보여주고 있음을 확인할 수 있었다. 본 연구의 결과는 수자원운영 및 관리, 수력, 농업 등 계절예측모델을 활용한 여러 응용분야에 적용이 가능할 것으로 기대된다.

Keywords

References

  1. Arakawa, A., and Lamb, V. R. (1997). "Computational design of the basic dynamic processes of the UCLA general circulation model." Methods in Computational Physics, Vol. 17, pp. 173-265.
  2. Boe, J., Terray, L., Habets, F., and Martin, E. (2007). "Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies." International Journal of Climatology, Vol. 27, pp. 1643-1655. https://doi.org/10.1002/joc.1602
  3. Cannon, A. J. (2008). "Probabilistic multisite precipitation downscaling by an expanded Bernoulli-Gamma density network." Journal of Hydrometeorology, Vol. 9, pp. 1284-1300. https://doi.org/10.1175/2008JHM960.1
  4. Cannon, A. J. (2012). "Neural networks for probabilistic environmental prediction: Conditional Density Estimation Network Creation and Evaluation (CaDENCE) in R." Computer & Geosciences, Vol. 41, pp. 126-135. https://doi.org/10.1016/j.cageo.2011.08.023
  5. Cannon, A. J., Sobie, S. R., and Murdock, T. O. (2015). "Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes?," Journal of Climate, Vol. 28, pp. 6938-6959. https://doi.org/10.1175/JCLI-D-14-00754.1
  6. Charney, J. G., and Phillips, N. A. (1953). "Numerical integration of the quasi-geostrophic equations for barotropic and simple baroclinic flows." Journal of Meteorology, Vol. 10, pp. 71-99. https://doi.org/10.1175/1520-0469(1953)010<0071:NIOTQG>2.0.CO;2
  7. Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., and Wood, N. (2005). "A new dynamical core for the Met Office's global and regional modelling of the atmosphere." Quarterly Journal of the Royal Meteorological Society, Vol. 131, pp. 1759-1782. https://doi.org/10.1256/qj.04.101
  8. Dosio, A., and Paruolo, P. (2011). "Bias correction of the ENSEMBLES high-resolution climate change projections for use by impact models: evaluation on the present climate." Journal of Geophysical Research, Vol. 116, D16106. https://doi.org/10.1029/2011JD015934
  9. Gaur, A., and Simonovic, S. P. (2015). "Projected changes in the dynamics of flood hazard in the Grand River basin, Canada." British Journal of Environment and Climate Change, Vol. 5, No. 1, pp. 37-51. https://doi.org/10.9734/BJECC/2015/17705
  10. Gudmundsson, L., Bremnes, J. B., Haugen, J. E., and Engen-Skaugen, T. (2012). "Technical note: downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods." Hydrology and Earth System Sciences, Vol. 16, pp. 3383-3390. https://doi.org/10.5194/hess-16-3383-2012
  11. Hastie, T., Tibshirani, R., and Friedman, J. H. (2001). The elements of statistical learning, Springer.
  12. Ines, A. V., and Hansen, J. W. (2006). "Bias correction of daily GCM rainfall for crop simulation studies." Agricultural and Forest Meteorology, Vol. 138, pp. 44-53. https://doi.org/10.1016/j.agrformet.2006.03.009
  13. KMA (Korea Meteorological Administration) (2016). A forecast characteristics analysis technical note of GloSea5. KMA, pp. 3-14.
  14. Li, H., Sheffield, J., and Wood, E. F. (2010). "Bias correction of monthly precipitation and temperature fields from Intergovernmental panel on climate change AR4 models using equidistant quantile matching." Journal of Geophysical Research, Vol. 115, D10101. https://doi.org/10.1029/2009JD012882
  15. Maraun, D. (2012). "Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums." Geophysical Research Letters, Vol. 39, L06706.
  16. Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M., Brienen, S., Rust, H. W., Sauter, T., Themessl, M., Venema, V. K. C., Chun, K. P., Goodess, C. M., Jones, R. G., Onof, C., Vrac, M., and Thiele-Eich, I. (2010) "Precipitation downscaling under climate change: recent developments to bridge the gap between dynamical models and the end user." Reviews of Geophysics, Vol. 48, L06706.
  17. Mooley, D. A. (1973). "Gamma distribution probability model for asian summer monsoon monthly rainfall." Monthly Weather Review, Vol. 101, pp. 160-176. https://doi.org/10.1175/1520-0493(1973)101<0160:GDPMFA>2.3.CO;2
  18. Moon, S., Han, S., Choi, K., and Song, J. (2016). "Data processing system and spatial-temporal reproducibility assessment of GloSea5 model." Journal of Korea Water Resources Association, Vol. 49, No. 9, pp. 761-771. https://doi.org/10.3741/JKWRA.2016.49.9.761
  19. Panofsky, H. W., and Brier, G. W. (1968). Some applications of statistics to meteorology. The Pennsylvania State University Press, Philadelphia.
  20. Piani, C., Haerter, J., and Coppola, E. (2010a). "Statistical bias correction for daily precipitation in regional climate models over Europe." Theoretical and Applied Climatology, Vol. 99, pp. 187-192. https://doi.org/10.1007/s00704-009-0134-9
  21. Piani, C., Weedon, G., Best, M., Gomes, S., Viterbo, P., Hagemann, S., and Haerter, J. (2010b). "Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models." Journal of Hydrology, Vol. 395, pp. 199-215. https://doi.org/10.1016/j.jhydrol.2010.10.024
  22. Reichle, R. H., and Koster, R. D. (2004). "Bias reduction in short records of satellite soil moisture." Geophysical Research Letters, Vol. 31, L19501. https://doi.org/10.1029/2004GL020938
  23. Rojas, R., Feyen, L., Dosio, A., and Bavera, D. (2011). "Improving pan-European hydrological simulation of extreme events through statistical bias correction of RCM-driven climate simulations." Hydrology and Earth System Sciences, Vol. 15, pp. 2599-2620. https://doi.org/10.5194/hess-15-2599-2011
  24. Schmidli, J., Frei, C., and Vidale, P. L. (2006). "Downscaling from GCM precipitation: a benchmark for dynamical and statistical downscaling methods." International Journal of Climatology, Vol. 26, pp. 679-689. https://doi.org/10.1002/joc.1287
  25. Teutschbein, C., and Seibert, J. (2012). "Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods." Journal of Hydrology, Vol. 16, pp. 12-29.
  26. Themessl, M. J., Gobiet, A., and Heinrich, G. (2012). "Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal." Climatic Change, Vol. 112, pp. 449-468. https://doi.org/10.1007/s10584-011-0224-4
  27. Themessl, M. J., Gobiet, A., and Leuprecht, A. (2011). "Empirical-statistical downscaling and error correction of daily precipitation from regional climate models." International Journal of Climatology, Vol. 31, pp. 1530-1544. https://doi.org/10.1002/joc.2168
  28. Thom, H. C. S. (1968). "Approximate convolution of the gamma and mixed gamma distributions." Monthly Weather Review, Vol. 96, pp. 883-886. https://doi.org/10.1175/1520-0493(1968)096<0883:ACOTGA>2.0.CO;2
  29. Wood, A. W., Leung, L. R., Sridhar, V., and Lettenmaier, D. P. (2004). "Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs." Climatic Change, Vol. 62, pp. 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e