• Title/Summary/Keyword: 예측 교통정보

Search Result 440, Processing Time 0.029 seconds

A Short-Term Vehicle Speed Prediction using Bayesian Network Based Selective Data Learning (선별적 데이터 학습 기반의 베이지안 네트워크를 이용한 단기차량속도 예측)

  • Park, Seong-ho;Yu, Young-jung;Moon, Sang-ho;Kim, Young-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2779-2784
    • /
    • 2015
  • The prediction of the accurate traffic information can provide an optimal route from the place of departure to a destination, therefore, this makes it possible to obtain a saving of time and money. To predict traffic information, we use a Bayesian network method based on probability model in this paper. Existing researches predicting the traffic information based on a Bayesian network generally used to study the data for all time. In this paper, however, only data corresponding to same time and day of the week to predict selectively will be used for learning. In fact, the experiment was carried out for 14 links zone in Seoul, also, the accuracy of the prediction results of the two different methods should be tested with MAPE (Mean Absolute Percentage Error) which is commonly used. In view of MAPE, experimental results show that the proposed method may calculate traffic prediction value with a higher accuracy than the method used to learn the data for all time zones.

Functional regression approach to traffic analysis (함수회귀분석을 통한 교통량 예측)

  • Lee, Injoo;Lee, Young K.
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.5
    • /
    • pp.773-794
    • /
    • 2021
  • Prediction of vehicle traffic volume is very important in planning municipal administration. It may help promote social and economic interests and also prevent traffic congestion costs. Traffic volume as a time-varying trajectory is considered as functional data. In this paper we study three functional regression models that can be used to predict an unseen trajectory of traffic volume based on already observed trajectories. We apply the methods to highway tollgate traffic volume data collected at some tollgates in Seoul, Chuncheon and Gangneung. We compare the prediction errors of the three models to find the best one for each of the three tollgate traffic volumes.

A Methodology for Providing More Reliable Traffic Safety Warning Information based on Positive Guidance Techniques (Positive Guidance 기법을 응용한 실시간 교통안전 경고정보 제공방안)

  • Kim, Jun-Hyeong;O, Cheol;O, Ju-Taek
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.2
    • /
    • pp.207-214
    • /
    • 2009
  • This study proposed an advanced warning information system based on real-time traffic conflict analysis. An algorithm to detect and analyze unsafe traffic events associated with car-following and lane-changes using individual vehicle trajectories was developed. A positive guidance procedure was adopted to provide warning information to alert drivers to hazardous traffic conditions derived from the outcomes of the algorithm. In addition, autoregressive integrated moving average (ARIMA) analyses were conducted to investigate the predictability of warning information for the enhancement of information reliability.

Short-Term Prediction of Vehicle Speed on Main City Roads using the k-Nearest Neighbor Algorithm (k-Nearest Neighbor 알고리즘을 이용한 도심 내 주요 도로 구간의 교통속도 단기 예측 방법)

  • Rasyidi, Mohammad Arif;Kim, Jeongmin;Ryu, Kwang Ryel
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.121-131
    • /
    • 2014
  • Traffic speed is an important measure in transportation. It can be employed for various purposes, including traffic congestion detection, travel time estimation, and road design. Consequently, accurate speed prediction is essential in the development of intelligent transportation systems. In this paper, we present an analysis and speed prediction of a certain road section in Busan, South Korea. In previous works, only historical data of the target link are used for prediction. Here, we extract features from real traffic data by considering the neighboring links. After obtaining the candidate features, linear regression, model tree, and k-nearest neighbor (k-NN) are employed for both feature selection and speed prediction. The experiment results show that k-NN outperforms model tree and linear regression for the given dataset. Compared to the other predictors, k-NN significantly reduces the error measures that we use, including mean absolute percentage error (MAPE) and root mean square error (RMSE).

Disaggregate Demand Forecasting and Estimation of the Optimal Price for UTIS Service (무선교통정보수집제공시스템(UTIS) 서비스의 이용 수요 예측 및 이용료 적정 수준 산정에 관한 연구)

  • Jang, Seok-Yong;Jung, Hun-Young;Ko, Sang-Seon
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.101-115
    • /
    • 2008
  • This study reports UTIS(Urban Traffic Information System), which has been generalized in developed countries through brisk research and development and is being promoted for introduction by National Police Agency and Road Traffic Authority to reduce the astronomical amount of social expenses including traffic congestion expenses. Also this study investigates the proper charges for using by the preestimate of demand and contentment according to methods of payment after the service is introduced. The results of this study are as follows. First, demand forecast model is constructed by Binary Logit Model. Second, forecast models of using aspects of UTIS service according to methods of payment are established by Ordered Probit Model. Third, the proper charges for using of UTIS service according to methods of payment are presented to the supplier in the aspects of users. For this, preferences by using aspects and methods of payment are captured. And unit elasticity of coefficient of utilization is understood through responsiveness analysis according to methods of payment.

Forecasting of Traffic Accident Occurrence Pattern Using LSTM (LSTM을 이용한 교통사고 발생 패턴 예측)

  • Roh, You Jin;Bae, Sang Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.59-73
    • /
    • 2021
  • There are many lives lost due traffic accidents, and which have not decreased despite advances in technology. In order to prevent traffic accidents, it is necessary to accurately forecast how they will change in the future. Until now, traffic accident-frequency forecasting has not been a major research field, but has been analyzed microscopically by traditional methods, mainly based on statistics over a previous period of time. Despite the recent introduction of AI to the traffic accident field, the focus is mainly on forecasting traffic flow. This study converts into time series data the records from 1,339,587 traffic accidents that occurred in Korea from 2014 to 2019, and uses the AI algorithm to forecast the frequency of traffic accidents based on driver's age and time of day. In addition, the forecast values and the actual values were compared and verified based on changes in the traffic environment due to COVID-19. In the future, these research results are expected to lead to improvements in policies that prevent traffic accidents.

Rolling Horizon Implementation for Real-Time Operation of Dynamic Traffic Assignment Model (동적통행배정모형의 실시간 교통상황 반영)

  • SHIN, Seong Il;CHOI, Kee Choo;OH, Young Tae
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.135-150
    • /
    • 2002
  • The basic assumption of analytical Dynamic Traffic Assignment models is that traffic demand and network conditions are known as a priori and unchanging during the whole planning horizon. This assumption may not be realistic in the practical traffic situation because traffic demand and network conditions nay vary from time to time. The rolling horizon implementation recognizes a fact : The Prediction of origin-destination(OD) matrices and network conditions is usually more accurate in a short period of time, while further into the whole horizon there exists a substantial uncertainty. In the rolling horizon implementation, therefore, rather than assuming time-dependent OD matrices and network conditions are known at the beginning of the horizon, it is assumed that the deterministic information of OD and traffic conditions for a short period are possessed, whereas information beyond this short period will not be available until the time rolls forward. This paper introduces rolling horizon implementation to enable a multi-class analytical DTA model to respond operationally to dynamic variations of both traffic demand and network conditions. In the paper, implementation procedure is discussed in detail, and practical solutions for some raised issues of 1) unfinished trips and 2) rerouting strategy of these trips, are proposed. Computational examples and results are presented and analyzed.

Uniform Event-Reaction Formula for Incident Management strategy (돌발상황 발생에 따른 대응의 체계화 방안 연구)

  • 변완희;김대호
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.1
    • /
    • pp.149-157
    • /
    • 2001
  • 내부순환로 교통관리시스템은 기존의 국내 교통 시스템들과는 달리 충분한 수집체계와 정보제공 체계를 갖추고 있으며, 전략의 구체화와 현실적 실현, 즉 전략의 시스템화를 위해 많은 노력을 기울였다. 그런 노력의 일환으로 이 시스템에서는 다양하고 복잡한 돌발상황을 단순화하고 일반화하기 위해 Uniform Event Reaction Formula라 하는 개념을 사용하였다. 이 개념은 어떤 돌발상황이 발생하면 이로 인해 영향을 받는 반응 영역과 영향을 받지 않는 비반응 영역으로 분리한 후, 반응 영역은 예측을 통한 제어 관리를 수행하고, 비반응 영역은 통상적인 제어 관리만을 수행함을 의미한다. 그러나, 돌발상황에 따른 반응 영역과 비반응 영역의 결정에 필요한 돌발상황 처리시간 예측과 대기행렬 예측 모형은 내부순환로의 도로 및 교통환경에 적합한지 검증되지 않아 많은 시행착오가 예상된다. 특히, 돌발상황의 처리시간 예측은 동질대응 구간 결정의 가장 중요한 요소로서, 현재는 처리시간에 상당한 여유를 두어 운영할 계획이지만 궁극적으로는 내부순환로에 적합한 처리시간 예측 모형의 개발이 필요할 것으로 판단된다.

  • PDF

고속도로 통행시간 예측을 위한 TCS 자료 분석 기술 현황

  • Yang, Yeong-Gyu;Park, Won-Sik;NamGung, Seong
    • Information and Communications Magazine
    • /
    • v.25 no.7
    • /
    • pp.10-15
    • /
    • 2008
  • 최근 고속도로의 길이와 운전 차량 수가 빠른 속도로 증가하고 있어 운전자들에게 고속도로 교통상황를 신속하고 정확하게 제공하는 것이 중요한 문제로 대두되고 있다. 고속도로통행료수납시스템(TCS: Toll Collection Systrem)은 전국 고속도로를 주행하는 차량의 통행 정보를 실시간으로 제공하므로 교통 상황 예측에 유용하게 활용될 수 있다. TCS 자료는 차량이 입구영업소를 통과한 후 출구영업소를 통과하는 데 소요된 시간으로서, 운전한 시간, 휴게소 체류시간 등을 모두 포함한 통행시간으로 운전자의 운전 특성, 통행 목적, 피로의 정도에 따라 편차가 크게 나타난다. TCS 자료의 통행시간을 기초로 예측된 정보는 이러한 불확실성을 포함하고 있기 때문에 이를 활용하기 다양한 데이터처리 기법이 필요하다. 본 논문에서는 TCS 자료의 효율적인 전처리 및 교통 예측 기법 현황에 대하여 기술하고 향후 발전 방향을 제시하였다.

The study of Estimation model for the short-term travel time prediction (단기 통행시간예측 모형 개발에 관한 연구)

  • LEE Seung-jae;KIM Beom-il;Kwon Hyug
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.3 no.1 s.4
    • /
    • pp.31-44
    • /
    • 2004
  • The study of Estimation model for the short-term travel time prediction. There is a different solution which has predicted the link travel time to solve this problem. By using this solution, the link travel time is predicted based on link conditions from time to time. The predicated link travel time is used to search the shortest path. Before providing a dynamic shortest path finding, the prediction model should be verified. To verify the prediction model, three models such as Kalman filtering, Stochastic Process, ARIMA. The ARIMA model should adjust optimal parameters according to the traffic conditions. It requires a frequent adjustment process of finding optimal parameters. As a result of these characteristics, It is difficult to use the ARIMA model as a prediction. Kalman Filtering model has a distinguished prediction capability. It is due to the modification of travel time predictive errors in the gaining matrix. As a result of these characteristics, the Kalman Filtering model is likely to have a non-accumulative errors in prediction. Stochastic Process model uses the historical patterns of travel time conditions on links. It if favorably comparable with the other models in the sense of the recurrent travel time condition prediction. As a result, for the travel time estimation, Kalman filtering model is the better estimation model for the short-term estimation, stochastic process is the better for the long-term estimation.

  • PDF