• Title/Summary/Keyword: 예측조합

Search Result 805, Processing Time 0.029 seconds

Multi-Label Combination for Prediction of Protein Subcellular Localization (다중레이블 조합을 사용한 단백질 세포내 위치 예측)

  • Chi, Sang-Mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1749-1756
    • /
    • 2014
  • Knowledge about protein subcellular localization provides important information about protein function. This paper improves a label power-set multi-label classification for the accurate prediction of subcellular localization of proteins which simultaneously exist at multiple subcellular locations. Among multi-label classification methods, label power-set method can effectively model the correlation between subcellular locations of proteins performing certain biological function. With constrained optimization, this paper calculates combination weights which are used in the linear combination representation of a multi-label by other multi-labels. Using these weights, the prediction probabilities of multi-labels are combined to give final prediction results. Experimental results on human protein dataset show that the proposed method achieves higher performance than other prediction methods for protein subcellular localization. This shows that the proposed method can successfully enrich the prediction probability of multi-labels by exploiting the overlapping information between multi-labels.

Analysis of the debris flow occurrence according to soil moisture conetnt in eaach soil layer based on predicted rainfall (예측 강우 기반의 토층별 토양수분 함량에 따른 토석류 발생 예측 분석)

  • Kim, Namgyun;Lee, Se On;Kim, Man-il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.278-278
    • /
    • 2022
  • 2020년 집중호우로 인하여 우리나라 전국에 걸쳐 약 2,000여 곳의 산사태, 토석류가 발생하였고 약 1,217ha의 피해 면적이 발생하였다. 피해지역의 특히 생활권 중심의 사면과 계류의 관리 필요성이 높아지고 있다. 산림청 산사태정보시스템에서는 토양함수지수가 80% 도달 시 주의보, 100% 도달 시 경보를 발령하는 대국민 서비스를 제공하고 있다. 본 연구에서는 토층의 깊이에 따른 함수비 분포에 따라 토석류의 발생 가능성에 대한 분석을 수행하고자 하였으며, 토양함수는 기상 수치모델에 의한 예측 강우 자료를 활용하였다. 예측 강우 모델은 토석류가 주로 발생하는 여름철 집중호우 시기인 남서풍을 고려하여 도메인을 구성하였고 산림의 증발산 및 토양수분 모의 정확도 향상을 위해 임상도와 토지피복도를 사용하여 보정하였다. 토층내 토양수분의 함량은 토질에 따라 그 특성이 다르기 때문에 토질과 관련한 주제를 이용하여 토양정보를 활용하였다. 내부마찰각, 점착력, 단위중량, 밀도, 지질도, 지형경사, 표고, 유효토심에 대한 정보를 구축하여, 예측강우에 따라 토층의 수분 함량을 추정하여 붕괴 발생 가능성을 분석하였다. 2006년 평창지역에서 발생한 토석류에 대하여 수행하였으며 토층의 심도는 0.5~1m 범위의 분포에 대하여 체적함수에 따른 실제 토석류 발생에 대한 검증을 수행하였다.

  • PDF

A Study on the Prediction of the Construction Cost in Planning Stage of Local Housing Union Project (지역주택조합사업 기획단계의 공사비 예측에 관한 연구)

  • Lee, Jin-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.653-659
    • /
    • 2018
  • The accurate prediction of construction cost is a key factor in a project's success. However, it is hard to predict the construction costs in the planning stages rapidly and precisely when drawings, specifications, construction cost calculation statements are incomplete, among other factors. Accurate construction-cost prediction in the planning stage of a project is also important for project feasibility studies and successful completion. Therefore, various techniques have been applied to accurately predict construction costs at an early stage when project information is limited. There are many factors that affect the construction cost prediction. This paper presents a construction-cost prediction method as multiple regression model with seven construction factors as independent variables. The method was used to predict the construction cost of a local housing union project, and the error rate was 4.87%. It is not possible to compare the cost of the project at the planning stage of the local housing union project, but it has high prediction accuracy compared to the unit price of an existing unit area. It is likely to be applied in construction-cost calculation work and to contribute to the establishment of the budget for the local housing union project.

Protein Interaction Possibility Ranking Method based on Domain Combination (도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법)

  • Han Dong-Soo;Kim Hong-Song;Jong Woo-Hyuk;Lee Sung-Doke
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.5
    • /
    • pp.427-435
    • /
    • 2005
  • With the accumulation of protein and its related data on the Internet, many domain based computational techniques to predict protein interactions have been developed. However, most of the techniques still have many limitations to be used in real fields. They usually suffer from a low accuracy problem in prediction and do not provide any interaction possibility ranking method for multiple protein pairs. In this paper, we reevaluate a domain combination based protein interaction prediction method and develop an interaction possibility ranking method for multiple protein pairs. Probability equations are devised and proposed in the framework of domain combination based protein interaction prediction method. Using the ranking method, one can discern which protein pair is more probable to interact with each other than other protein pairs in multiple protein pairs. In the validation of the ranking method, we revealed that there exist some correlations between the interacting probability and the precision of the prediction in case of the protein pair group having the matching PIP(Primary Interaction Probability) values in the interacting or non interacting PIP distributions.

Inter-Species Validation for Domain Combination Based Protein-Protein Interaction Prediction Method

  • Jang, Woo-Hyuk;Han, Dong-Soo;Kim, Hong-Soog;Lee, Sung-Doke
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.243-248
    • /
    • 2005
  • 도메인 조합에 기반한 단백질 상호작용 예측 기법은 효모와 같은 특정 종에 대하여 우수한예측 정확도를 보이는 것으로 알려졌으나, 인간과 같은 고등 생명체의 단백질에 대한 상호작용 예측을 수행하기 위하여는 여러종에 대한 기법의 적절성검증과 최적의 학습집단 구성 방안에 대한 연구가 선행되어야 한다. 본 논문에서는, 초파리 단백질을 이용한 예측 정확도 검증으로 도메인 조합 기법의 일반화 가능성을 타진 하고 이종간의 상호작용 예측실험 및 정확도 검증을 통하여 비교적 연구가 덜 되어진 종의 단백질 상호작용 예측을 위한 학습집단 구성 방법에 대하여 기술한다. 초파리 실험에서는 10351개의 상호작용이 있는 단백질 쌍 가운데, 80%와 20%를 각각 학습집단 및 실험집단으로 사용하였으며, 상호작용이 없는단백질 쌍의 학습집단은 1배에서 5배까지 변화시키면서 예측 정확도를 관찰하였다. 이 결과77.58%의 민감도와 92.61%의 특이도를 확인하였다. 이종간의 상호작용 예측 실험은 효모, 초파리, 효모, 초파리에 해당하는 학습집단 각각을 바탕으로 Human, Mouse, E. coli, C. elegans 등의 단백질 상호작용 예측을 수행하였다. 실험 곁과 학습집단의 도메인이 실험집단의 도메인과 많이 겹칠수록 높은 정확도를 보여주었으며, 도메인 집단간의 유사도를 나타내기 위해 고안한 Domain Overlapping Rate(DOR) 는 상호작용 예측 정확도의 중요한 요소임을 찾아내었다.

  • PDF

Estimation of Sound Pressure from Vibration Signals on a Flat Plate and Experiment (진동 신호를 이용한 평판의 음압 분포 예측)

  • Kim, Kwan-Ju;Choi, Sung-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.340-345
    • /
    • 2000
  • 진동하는 구조물의 음향 방사 예측에는 키르히호프-헬름홀쯔 적분 방정식에 근본을 둔 경계 요소 해석이 널리 사용된다. 이 경계 요소 해석은 익히 알고 있듯이 구조물의 동적 거동이 정량적으로 표현될 수 있는 경우는 매우 높은 정확도의 예측 결과를 제공한다. 그러나 실제 현상에서 접할 수 있는 복잡한 구조물의 음향 방사 예측에는 많은 변수들로 인해 예측의 정확도가 감소됨은 확실하다. 다른 방법으로는 실험을 통한 임의의 음장 예측 방법인 근음장 음향 홀로그래피(nearfield acoustical holography) 방법을 들 수 있다. 이 방법은 실제로 발생되는 음향 방사로부터 마이크로폰을 이용하여 홀로그램면의 음압 또는 속도를 측정하고 키르히호프-헬름홀쯔 적분 방정식에 적용하여 임의의 홀로그램면에 투사(mapping)시켜 음장을 예측하는 방법이다. 근음장 음향 홀로그래피는 탁월한 정확성을 갖고 있으나, 측정의 복잡성과 홀로그램면을 형성하기 위한 많은 이산점(절점)의 필요성 등의 단점을 갖고 있다. 본 논문에서는 또 다른 음장 예측 방법인 실험의 장점과 유한 요소 해석의 장정을 복합시킨 모드 확장 방법(modal expansion method)을 사용하여 단순 구조물인 평판의 진동에 의한 음장을 예측해 보았다. 모드 확장 방법은 구조물의 동적 거동은 모드의 선형 조합으로 표현될 수 있다는 것에 그 원리를 둔다. 본 논문은 단순 평판을 대상으로 유한 요소 해석으로 구한 모드 정보와 실험에 의해 얻은 입의 가진 주파수에 대한 진동 표면의 속도 분포를 조합하여 속도 경계 조건을 구성, 경계 요소 해석으로 음장 예측을 수행하였으며 모드 확장 방법을 사용함에 있어 고려해야할 몇 가지 사항에 대해 다루었다.

  • PDF

Long-term Streamflow Prediction for Integrated Real-time Water Management System (통합실시간 물관리 운영시스템을 위한 장기유량예측)

  • Kang Boosik;Rieu Seung Yup;Ko Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1450-1454
    • /
    • 2005
  • 수자원관리에 있어서 미래시구간에 대한 유량예측은 수자원시스템운영자에게 있어서 의사결정에 결정적인 영향을 미치는 가장 중요한 요소 중의 하나이다. 효율적 물배분이나 발전 등의 이수활동을 위해서 최소 월단위 이상의 장기유량예측이 필요하며, 이를 위해서는 강우예측이 선행되어야 하는데, 본 연구에서는 통합 실시간 물관리 운영시스템을 위한 중장기 유량예측을 목표로 방법론을 제시하고자 한다. 중장기 유량예측을 수행하는 대표적인 방법 중의 하나는 앙상블 유량예측(ESP; Ensemble Streamflow Prediction) 기법이다. ESP란 현재의 유역상태를 초기조건으로 사용하고 과거의 온도나 강수 등의 시계열앙상블을 모형입력으로 이용해서 강우-유출모형을 통하여 유출량을 예측하는 기법이다. ESP는 결국 현재의 유역상태와 유역에서의 과거강우관측기록, 미래강우예측에 대한 정보를 조합하여 그에 따른 유출앙상블을 생산해 내게 된다. 유출앙상블은 각 앙상블 트레이스가 갖게 되는 가중치에 따라 확률분포를 달리 갖게 되고 경우에 따라서는 유량으로부터 2차적으로 유도되는 변수들의 확률분포로 전이되기도 한다. 기존의 ESP 이론은 미국 NWS의 범주형 확률예보를 근간으로 하고 있어, 이를 국내 환경에 그대로 적용시키기에 어려움이 있어 왔다. 따라서 본 연구에서는 국내 기상청의 월간 강수전망을 이용하고, 이러한 정보의 특성에 맞는 ESP기법을 제시하였다. 더 나아가 중장기 수자원운영을 위한 일단위 월강수시나리오 구성을 위해서 수치예보와 월강수전망을 조합하여 ESP를 사용하는 기법을 제시하였다.

  • PDF

A Study on Ventricular Fibrillation Prediction through neurologic and multi-morphic analyze of intra-cardiac database and Implementation of Simulator (체내 심전도 데이터의 신경학적 분석 및 다형성 판별을 통한 심실세동 예측에 관한 연구 및 시뮬레이터 구현)

  • Shin, K.S.;Kim, J.K.;Park, H.C.;Lee, C.K.;Lee, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.489-490
    • /
    • 2008
  • 본 고에서는 체내 심실신호를 농하여 신경학적 분석 및 다형성의 측면에서 심실세동이 일어나는 것을 예측하는 분석 알고리즘을 설계하였다. 신경학적 측면에서는 시계열 신호의 Peak to Peak Interval을 예측법과 0.15Hz를 기준으로 HRV 신호의 AR Burg 모델링을 통하여 고주파성과 저주파성을 나누어 교감신경과 부교감신경의 활동성 통한 신경학적 예측법을 제시하였으며 또한 체내 심실신호의 비선형적 특성을 고려한 Fractal Dimension을 생성시킴으로서 주기성의 특성과 다형성 통한 예측법을 제시하였다. 체내 심전도를 기반으로 Simulation 하였으며 각 분석별 조합을 통하여 최적의 예측 구조를 찾고자 하였다. 의학적 의미가 있는 민감도와 특이도를 판별하였으며 예측을 위한 수행시간을 실험하였다. 이를 통하여 자율신경 활성도와 다형성 판별을 조합한 방법이 심실세동 예측을 위한 민감도의 측면에서 가장 우수함을 나타내었고 시뮬레이션을 위만 시뮬레이터(Simulator) UI(User Interface)를 제시하였다.

  • PDF

Real-time blending method development of radar-based QPF and numerical weather prediction models for hydrological application (수문학적 활용을 위한 레이더와 수치예보모델 예측강우의 실시간 병합 기법 개발)

  • Yoon, Seong-Sim;Lee, Dong-Ryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.99-99
    • /
    • 2018
  • 기상이변으로 인해 국지성 호우의 발생 증가와 그로 인한 수재해 피해가 증가하고 있다. 따라서 수재해를 사전에 예측하고 저감하기 위해 비구조물적 대책인 실시간 홍수예보시스템 개발 및 운영에 관한 연구들이 수행되고 있다. 일반적으로 홍수예보시스템은 대피선행시간 확보를 위해서 초단시간 혹은 단기 수치예보모델을 수문해석모형이나 예보기법의 입력으로 활용하고 있다. 초단시간 예측은 기상레이더를 기반으로 외삽, 이류, 셀 추적 등의 기법을 활용하여 0~3시간 이내의 강수예측을 수행한다. 그러나 역학이나 물리적 과정이 동반되지 못하여 0~ 2시간 이내에서의 예측성은 높은 반면, 예측시간이 길어질수록 예측력이 낮아진다. 단기수치예보모델은 종관관측에 의존하면서 역학이나 물리과정을 동반하므로 0~6시간 혹은 12시간 이상의 예측을 수행하지만, 수치모델의 고유특성인 스핀업 등의 예측 불확실성이 내재되어 있어 예측 초기시간에서의 예측력이 낮은 한계가 있다. 따라서 강수예측의 정확도 향상을 위해 레이더와 수치예보모델의 병합기법이 필요하다. 본 연구에서는 통계분석을 통해 경험적으로 산출된 시간적 가중치를 이용한 기존 병합기법의 한계를 극복하면서 호우에 따른 가변성을 반영하는 실시간 병합기법을 개발하고, 수문학적인 활용성을 평가하고자 하였다. 사용된 예측강우 자료는 레이더 기반인 MAPLE, KONOS, 공간규모분할 예측강우와 수치예보모델 기반인 UM와 ASAPS의 예측강우이며, 제시한 가중치 산정기법은 직전 예측강우의 오차가 현 시점의 예측강우의 오차와 유사하다는 가정하에 오차항을 포함한 과거 1시간 예측강우들간의 가중치 조합이 과거 지상관측강우와의 평균제곱근오차가 최소가 되도록 화음 탐색법을 이용하여 찾는 것이다. 가중치 조합은 예측강우의 생산 시간 간격을 고려하여 매 10분마다 산정하며, 미래 3시간 예측까지 산정된 가중치를 적용한다. 수도권 영역을 대상으로 병합된 예측강우와 레이더 관측강우를 비교한 결과, 정량적 정확도가 향상됨을 확인할 수 있었다. 또한, 예측강우의 수문학적 활용성은 도시유출해석모의를 통해 평가하였다. 그 결과, 병합된 예측강우로 모의된 수심이 관측수심과 유사하여 수문학적 활용성 확인할 수 있었다.

  • PDF

Experimental Study on the Short-Term Prediction of Rebar Price using Bidirectional LSTM with Data Combination and Deep Learning Related Techniques (양방향 LSTM과 데이터 조합탐색 및 딥러닝 관련 기법을 활용한 철근 가격 단기예측에 관한 실험적 연구)

  • Lee, Yong-Seong;Kim, Kyung-Hwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.38-45
    • /
    • 2020
  • This study presents a systematic procedure for developing a short-term prediction deep learning model of rebar price using bidirectional LSTM, Random Search, data combination, Dropout. In general, users intuitively determine these values, making it time-consuming and repetitive attempts to explore results with good predictive performance, and the results found by these attempts cannot be guaranteed to be excellent. With the proposed approach presented in this study, the average accuracy of short-term price forecasts is approximately 98.32%. In addition, this approach could be used as basic data to produce good predictive results in a study that predicts prices with time series data based on statistics, including building materials other than rebars.