• Title/Summary/Keyword: 예측제어(MPC)

Search Result 49, Processing Time 0.026 seconds

MPC based path-following control of a quadcopter drone considering flight path and external disturbances in MATLAB/Simulink (MATLAB/Simulink 기반 주행 경로와 외란을 고려한 쿼드콥터 드론의 모델 예측 제어 기반 경로 주행 제어)

  • Soon-Jae Gwon;Gu-Min Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.472-477
    • /
    • 2023
  • In this paper, we proposes the use of Model Predictive Control (MPC) techniques to enable quadcopter drones to effectively follow paths and maintain flight safety even under dynamic external environments and disturbances. Through simulations conducted in MATLAB/Simulink, the performance of two controllers, PID and MPC, is compared in flight scenarios with disturbances. The proposed design method shows that the MPC controller, when compared to the PID controller, exhibits a difference in the Mean Squared Error between the intended flight path and the actual path of the quadcopter drone. This difference is 0.2 in performance under no disturbance, and it increases to 0.8 under disturbance, demonstrating the improved path following accuracy of the MPC controller.

Obstacle Parameter Modeling for Model Predictive Control of the Unmanned Vehicle (무인자동차의 모델 예측제어를 위한 장애물 파라미터 모델링 기법)

  • Yeu, Jung-Yun;Kim, Woo-Hyun;Im, Jun-Hyuck;Lee, Dal-Ho;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1132-1138
    • /
    • 2012
  • The MPC (Model Predictive Control) is one of the techniques that can be used to control an unmanned vehicle. It predicts the future vehicle trajectory using the dynamic characteristic of the vehicle and generate the control value to track the reference path. If some obstacles are detected on the reference paths, the MPC can generate control value to avoid the obstacles imposing the inequality constraints on the MPC cost function. In this paper, we propose an obstacle modeling algorithm for MPC with inequality constraints for obstacle avoidance and a method to set selective constraint on the MPC for stable obstacle avoidance. Simulations with the field test data show successful obstacle avoidance and way point tracking performance.

A Novel Model Predictive Control for Five-leg Inverter Supplying Two Induction Motors (5-레그 인버터를 위한 새로운 모델 예측 제어 기법)

  • Lim, Young-Seol;Lee, June-Seok;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.402-403
    • /
    • 2018
  • 본 논문에서는 5-레그 인버터(Five-leg Inverter)를 이용하여 2대의 유도전동기를 구동하는 시스템의 모델 예측 제어 기법을 제안한다. 기존 모델 예측 제어 기법인 FS-MPC(Full-Set MPC)는 5-레그 인버터에서 가능한 32가지의 모든 스위칭 상태를 고려하기 때문에 제어 성능은 뛰어나지만 계산량이 많아지는 단점이 있다. 본 논문에서는 FS-MPC보다 제어 성능의 저하를 최소화하고 계산량은 현저히 감소시킨 모델 예측 제어 기법을 제안하며 시뮬레이션을 통해 제안하는 기법의 성능 및 타당성 검증을 검증한다.

  • PDF

The application of model predictive control for multi-loop control structure (다중루프 제어구조에의 모델예측제어의 적용)

  • 문혜진;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1400-1403
    • /
    • 1996
  • In this study, we applied the model predictive control(MPC) to Multi-loop control structure. Since MPC has many advantage for MIMO process and constraints handling, it induces the better performance to apply MPC to multi-loop control. And we suggest the advanced method to reduce the calculation load using the wavelet transform. It shows the possibility to substitute the existing PID control based structure with MPC.

  • PDF

Torque Tracking and Ripple Reduction of Permanent Magnet Synchronous Motor using Finite Control Set-Model Predictive Control (FCS-MPC) (영구자석 동기 전동기의 토크 제어 및 토크 리플 저감을 위한 유한 제어요소 모델 예측제어(FCS-MPC) 설계)

  • Park, Hyo-Seong;Lee, YoungIl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • This paper proposes a torque control method of permanent magnet synchronous motor, which has small torque ripple. The proposed control method is using the finite control set-model predictive control(FCS-MPC) strategy. An optimal input voltage vector minimizing a cost function is chosen among 6 passible active input voltage vectors following the FCS-MPC strategy. Then, a modulation factor for the optimal input voltage vector is computed to minimize the torque ripple. Thus, the proposed control method yields fast torque response and small torque ripple. The efficacy of the proposed method was verified through simulation and experiment.

Finite Control Set Model Predictive Control with Variable Sampling Time for Torque Ripple Reduction in SPMSM drive system (표면부착형 영구자석 동기 전동기 구동 시스템에서 토크 리플 저감을 위한 가변 샘플링 시간이 적용된 유한요소 모델예측제어)

  • Lee, Jae-Hyung;Choo, Kyoung-Min;Jeong, Won-Sang;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.396-397
    • /
    • 2019
  • 본 논문은 유한요소 모델예측제어(FCS-MPC)의 샘플링 시간을 가변하여 표면부착형 영구자석 동기 전동기(SPMSM)의 토크 리플을 개선하고 스위칭 손실을 저감하는 가변 샘플링 시간이 적용된 모델예측제어 기법을 제안한다. 기존 FCS-MPC는 토크 리플을 저감하기 위해 고정 샘플링 시간을 짧게 설정하였다. 고정 샘플링 시간을 짧게 설정함에 따라, 전압벡터의 변경횟수가 증가하여 스위칭 손실이 증가하였다. 본 논문은 이러한 문제점을 해결하기 위해 가변 샘플링 시간이 적용된 FCS-MPC를 통해 토크 리플을 저감하고, 전압벡터의 변경횟수를 감소시켜 스위칭 손실을 저감하였다. 본 논문에서 제안하는 기법은 시뮬레이션을 통해 증명되었다.

  • PDF

Model Predictive Control of Condensate Recycle Process in a Cogeneration Power Station: I. Controller Design and Numerical Application (열병합 발전소의 응축순환공정에 대한 모델예측제어: I. 제어기 설계와 수치적 적용)

  • Won, Wang-Yun;Lee, Bong-Kook;Lee, Seung-Joo;Lee, Seok-Young;Lee, Kwang-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1202-1208
    • /
    • 2006
  • Development of a model predictive control(MPC) algorithm and its application to the condensate recycle process of a cogeneration power station has been conducted. The cogeneration power station has different characteristics from other industrial processes where MPC has been dominantly applied in that the operating mode changes continuously with seasons and we Ether. Such a characteristic makes it difficulty, a linearized model was derived from mass and pressure balances and linearization. The MPC algorithm has been developed so that the controller tuning is easy with one tuning knob for each output and the constrained optimization is solved by an interior point method. Performance of the MPC algorithm has been verified with the numerically simulated process under various disturbance scenarios and mode changes.

The Finite Control Set Model Predictive Torque Control Method for Surface Mounted Permanent Magnetic Synchronous Motor of Electric Vehicle (전기자동차용 표면 부착형 영구자석 동기 전동기의 토크제어를 위한 유한 제어 요소 모델 예측제어(FCS-MPC) 기법)

  • Park, Seong Hwan;Lee, Young Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.453-462
    • /
    • 2016
  • This paper proposes a torque control method for surface mounted permanent magnetic synchronous motor (PMSM) driven by a 2-level voltage source driven inverter, which has fast torque response and small torque ripple. The proposed torque control method follows the finite control set model predictive control (FCS-MPC) strategy. A reference state is derived at each time step for the given time varying torque reference and the cost index is defined so that the tracking error for this reference state should be penalized. The choice of an optimal output voltage vector is made first from the 6 possible active voltage vectors of the 2-level voltage source inverter. Then a modulation factor for the chosen optimal voltage vector is obtained so that the torque ripple can be reduced further. It is shown that the proposed FCS-MPC control method yields fast torque tracking response and small torque ripple through simulation and experiments.

Enhancing Tracking Performance of a Bilinear System using MPC (쌍선형 시스템의 추종 성능 강화를 위한 예측 제어 알고리즘)

  • Kim, Seok-Kyoon;Kim, Jung-Su;Lee, Youngil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.237-242
    • /
    • 2015
  • This paper presents a method to enhance tracking performance of an input-constrained bilinear system using MPC (Model Predictive Control) when a feasible tracking control is known. Since the error dynamics induced by the known tracking control is asymptotically stable, there exists a Lyapunov function for the stable error dynamics. By defining a cost function including the Lyapunov function and describing tracking performance, an MPC law is derived. In simulation, the performance of the proposed MPC law is demonstrated by applying it to a converter model.

MPC-based Active Steering Control using Multi-rate Kalman Filter for Autonomous Vehicle Systems with Vision (비젼 기반 자율주행을 위한 다중비율 예측기 설계와 모델예측 기반 능동조향 제어)

  • Kim, Bo-Ah;Lee, Young-Ok;Lee, Seung-Hi;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.735-743
    • /
    • 2012
  • In this paper, we present model predictive control (MPC) applied to lane keeping system (LKS) based on a vision module. Due to a slow sampling rate of the vision system, the conventional LKS using single rate control may result in uncomfortable steering control rate in a high vehicle speed. By applying MPC using multi-rate Kalman filter to active steering control, the proposed MPC-based active steering control system prevents undesirable saturated steering control command. The effectiveness of the MPC is validated by simulations for the LKS equipped with a camera module having a slow sampling rate on the curved lane with the minimum radius of 250[m] at a vehicle speed of 30[m/s].