본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측에 대하여 데이터 마이닝 기법의 적용성을 검토하고자 한다. 물 공급이 이루어진 요일과 특이일에 대한 시계열 분석을 통한 단기 물 수요예측과 데이터 마이닝 기법을 적용한 결과를 상호 비교하여 데이터 마이닝 기법의 적용성을 제시하고자 한다. 이를 통하여 단기 물 수요예측알고리즘의 실용화 가능성을 높일 뿐만 아니라 실시간 예측을 위한 기초 데이터 마이닝 체계를 구축하고자 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2011.07a
/
pp.574-577
/
2011
H.264/AVC는 휘도 신호 $4{\times}4$ 블록을 위하여 9개의 화면 내 예측모드를 사용한다. 예측 모드는 8개의 방향성을 가진 모드와 하나의 비방향성 DC 모드가 있다. 휘도 신호 $16{\times}16$ 블록에서는 4가지의 예측 모드가 있으며 색차 신호 $8{\times}8$ 에서도 4개의 예측모드를 사용한다. 이러한 예측 모드들 중 최적의 예측 모드를 선택하기 위하여, 부호화기는 선택 가능한 모든 예측 모드의 율-왜곡 비용을 계산한 후, 최적의 율-왜곡 비용을 가진 예측 모드를 사용하여 부호화를 수행한다. 따라서 H.264/AVC의 화면 내 예측 과정은 많은 계산 복잡도를 가진다. 특히 하이 프로파일에서는 휘도 신호 $8{\times}8$ 블록이 화면 내 예측을 위해서 고려되므로 더욱 많은 계산 복잡도를 요구한다. 이에 본 논문은 H.264/AVC 하이 프로파일의 화면 내 예측의 부호화 계산 복잡도를 줄이는 방법을 제안한다. 현재 매크로 블록의 분산을 계산한 후, 이를 이용하여 율-왜곡 최적화에 후보로 사용되어지는 블록 모드를 결정하고, 각 블록 모드에서 제공하는 예측 모드들을 효율적으로 선택하는 방법을 연구 개발하였다. 제안된 방법은 기존 H.264/AVC 참조 소프트웨어인 JM13.1 부호화 시간 대비 약 83%의 연산시간이 감소하는 결과를 보였다.
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.1178-1182
/
2004
시계열 자료의 분석과 예측은 수문학분야에서 매우 중요하면, 최근 들어 특정한 수문시계열에서 카오스 특성이 발견되고 있다. 카오스 특성을 갖는 수문시계열의 예측에 있어, 기존의 거의 모든 연구는 시스템의 특성을 파악한 뒤 예측을 실시하는 표준접근법이 채택되어왔다. 그러나 Phoon 등은 시스템의 특성분석에 앞서 예측을 실시하고, 상태공 매개변수가 시스템의 특성분석단계가 아닌 예측단계에서 평가되는 가역접근법을 제안하였다. 본 연구에서는 Phoon 등이 제안한 가역접근법과 기존에 널리 적용되어온 표준접근법을 실제 일유출량 자료에 적용함으로써, 가역접근법의 적용성을 검토하고 카오스 시계열의 특성을 파악하였다. 본 연구에서 사용한 비선형 예측 기법으로는 카오스이론이 적용된 부분근사화 기법을 이용하였다. 카오스 특성분석을 통해, Bear 강 일유출량 시계열 자료에서 카오스 특성이 나타남을 알 수 있었다. 표준접근법과 가역접근법을 이용하여 Bear 강의 일유출량 자료에 대하여 예측을 실시한 결과, 카오스 특성을 갖는 일유출량 시계열 자료의 단기 예측의 우수성을 알 수 있었으면, 가역접근법이 표준접근법에 비해 좋은 결과를 나타내었다. 특히, 가역접근법은 예측단계에서 예측시간(T)에 대하여 예측매개변수를 최적화시킴으로써 보다 정밀한 예측을 할 수 있었으며, 시스템에 대한 정보손실이 발생하였을 경우 예측에 대한 상태공간 매개변수를 다시 추정해야 하는 표준접근법에 비해 실제적 적용성이 매우 우수하였다.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.128-132
/
2012
물은 생물의 생존을 위해 필수적인 요소로 인류가 시작된 이래로 물을 효율적으로 이용하고 안전하게 관리하기 위한 노력은 계속되어 왔다. 최근 지구 온난화가 주요 원인으로 알려진 국지성 집중호우의 피해는 매우 심각하며, 이로 인해 치수에 대한 중요성은 날로 커지고 있다. 지금까지 사용해 왔던 홍수 예 경보 과정은 특정 지점의 유출량을 예측하기 위해서 강우-유출 모형을 운영하였다. 그러나 물리적 모형의 경우 운영에 필요한 매개변수의 결정과정이 복잡하고, 매개변수 결정을 위해 많은 자료를 필요로 한다. 또한 그 매개변수의 결정과정은 많은 불확실성을 포함하고 있어서 모형의 운영을 위한 전처리과정과 계산과정을 거치는 동안 발생한 오차가 누적되어 결과물 속에는 많은 오차가 포함되어 있다. 본 연구에서는 기존의 홍수 예 경보 시스템의 문제점과 불확실성을 최대한 감소시키고 더 우수한 유출량 예측을 위해 neuro-fuzzy 추론 기법을 이용한 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하여 하천수위를 예측하였다. ANFIS는 신경회로망과 퍼지이론을 결합한 기법으로 신경회로망의 구조와 학습 능력을 이용하여 제어환경에서 획득한 입 출력 정보로부터 언어변수의 membership 함수와 제어규칙을 제어 대상에 적합하도록 자동으로 조종하는 기법이다. 본 연구에서는 ANFIS를 사용하여 탄천 하류에 위치한 대곡교의 수위를 예측하였다. 분석을 위해 2007년부터 2011년까지의 탄천 유역의 관측 강우자료와 수위 자료 중 강우강도와 지속시간, 강우 형태에 따라 7개의 강우사상을 선정하였다. 학습자료 및 보정자료의 변화에 따른 예측 오차를 비교하여 모형의 적용성과 적정성을 평가하였다. 적용결과 입력자료 구성의 경우 해당 시간의 강우량 및 수위자료와 10분 전 강우자료를 이용한 모델이 가장 우수한 예측을 보였고, 학습자료의 경우 자료의 길이가 길고, 최대홍수량이 큰 경우 가장 우수한 예측 결과를 보였다. 본 연구의 적용결과 가장 우수한 모형의 경우 30분 예측 첨두수위 오차는 0.32%, RMSE는 0.05m 이고 예측시간이 길어짐에 따라 오차가 비선형적으로 증가하는 경향을 보였다.
The majority of the natural gas demand in South Korea is mainly determined by the heating demand. Accordingly, there is a distinct seasonality in which the gas demand increases in winter and decreases in summer. Moreover, the degree of sensitiveness to temperature on gas demand has changed over time. This study firstly introduces changing temperature response function (TRF) to capture effects of changing seasonality. The temperature effect (TE), estimated by integrating temperature response function with daily temperature density, represents for the amount of gas demand change due to variation of temperature distribution. Also, this study presents an innovative way in forecasting daily temperature density by employing functional principal component analysis based on daily max/min temperature forecasts for the five big cities in Korea. The forecast errors of the temperature density and gas demand are decreased by 50% and 80% respectively if we use the proposed forecasted density rather than the average daily temperature density.
It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.
Yeong Na Yu;Min Hwan Shin;Dong Hyuk Kum;Kyoung Jae Lim;Jong Gun Kim
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.467-467
/
2023
강우에 의해 발생하는 비점오염물질의 수질 데이터가 충분하지 않아 비점오염원이 문제가 되고 있는 유역의 수질개선을 위한 대책마련이 어려운 실정이다. 기존에 환경부에서 운영하고 있는 자동측정망은 1시간 간격으로 데이터를 축적하고 있으나, 비점오염원이 문제가 되는 유역에 설치되어 있지 않거나 수온, DO, pH 등 현장항목만을 측정하고 있어 하천의 수질오염을 대표할 수 있는 T-P나 SS 등의 수질분석 항목의 부재하다. 이로인해 유역의 수질개선 대책을 수립하기 위한 오염원의 현황을 파악하기 어려운 실정이다. 따라서, 본 연구에서는 비점오염원관리지역 중 골지천 유역을 대상으로 수질항목별 상관성을 분석하고, 실측자료를 기반으로 DT, MLP, SVM, RF, GB, XGB 등의 머신러닝 기법을 통해 수질 예측 가능성을 연구하였다. 상관관계 분석결과 입력변수인 탁도 항목이 예측 수질과 뚜렷한 상관관계를 보이는 것으로 나타났으나, 그 외 항목에서는 약한 상관관계를 보이거나 상관관계가 없는 것으로 나타났다. 머신러닝 기법을 활용한 수질 예측 분석 결과, 검무교와 태봉2교, 제1여량교는 RF 기법에서 결정계수(R2) 0.57~0.86, RMSE 16.49~175.60으로 예측성이 우수한 것으로 나타났다. 관말교는 SVM 기법에서 R2 0.65, RMSE 57.69로, 송계교는 XGB 기법에서 R2 0.74, RMSE 282.86으로 가장 예측성이 우수한 것으로 나타났다. 분석결과와 같이 머신러닝 기법을 활용한 수질 예측은 가능하나, 예측성이 우수한 머신러닝 기법의 R2 비교 결과, 유역면적이 큰 제1여량교와 작은 관말교에서 0.57과 0.65로 다른 지점에 비해 낮은 것으로 나타났다. RMSE 비교 결과, 상류 산간지역에 발생한 국지성 호우의 영향으로 흙탕물이 가장 자주 발생하는 태봉2교 지점과 우선관리지역이 합류되는 송계교 지점에서 175.60과 282.86으로 예측값과 실측값의 오차가 큰 것으로 나타났다. 연구결과와 같이 하천 수질을 예측하기 위해서는 유역면적 혹은 유역특성과 관련한 기초자료를 추가로 적용하여 머신러닝 기법을 적용 해야할 것으로 판단된다. 또한, 본 연구에서 예측한 수질 항목 이외에 입력변수를 추가로 확보하여 수질의 예측 가능성을 검토해야 할 것으로 보여진다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.1161-1165
/
2006
본 연구는 OLS 및 변수선택법에 의해 통계학적 모형의 매개변수를 산정하여 모형의 적용성을 입증하고 하천 주요지점에 대한 홍수위 예측을 통해 홍수예보 및 예측 업무에 기여코자하는데 연구목적이 있다. 다중선형회귀모형을 구성하기 위한 독립변수는 예보지점의 수위/유출량 자료와 상류지점의 수위/유출량 자료, 그리고 유역의 선행 평균강우량 등의 자료를 독립변수로 하여 통계학적 홍수예측을 위한 다중선형 회귀모형을 각각 구성하여 적합성 여부를 판단하였다. 매개변수 산정은 OLS(Ordinary least square root method)와 변수선택(Stepwise)방법에 의해 산정하였으며, 중랑천 유역의 2002년부터 2005년까지의 수문사상 16개를 선정하여 모형에 적용한 결과 두 매개변수 산정방법 모두 30분에서 90분 예측은 상대적으로 정확한 결과를 나타내었으며, OLS 및 변수선택법에 의한 매개변수 산정결과 변수선택법에 의한 방법이 OLS 방법보다는 상관성이나 효율지수면에서 조금 더 정확한 값을 나타내고 있으나 독립변수의 일관성을 감안한다면 변수선택법보다는 OLS방법에 의한 매개변수 산정이 타당할 것으로 사료된다. 기존의 홍수예보 업무에 활용되고 있는 수문학적 홍수예측 모형인 저류함수법의 여러 매개변수 조정에 의한 홍수위 예측 방법보다는 비교적 간단한 통계적 방법에 의한 홍수위 예측 방법으로 홍수예보의 선행시간 확보가 필수적인 중랑천과 같이 유역면적이 작은 중소하천에서의 홍수예보 업무에 효과적으로 이용 가능할 것으로 사료된다.
One of the critical issues in the management of manufacturing companies is the efficient process of planning and operating service resources such as human, parts, and facilities, and it begins with the accurate service demand forecasting. In this research, service and sales data from the LCD monitor manufacturer is considered for an empirical study on Product Life Cycle (PLC) based service demand forecasting. The proposed PLC forecasting approach consists of four steps : understanding the basic statistics of data, clustering models using a self-organizing map, developing respective forecasting models for each segment, comparing the accuracy performance. Empirical experiments show that the PLC approach outperformed the traditional approaches in terms of root mean square error and mean absolute percentage error.
Protein antigens and their epitopes are targets for epitope based vaccines. There are many prediction servers which can be used for identification of binding peptides to MHC molecules. However, choosing of appropriate prediction servers is difficult. This study compared data obtained from prediction servers and evaluate them in scope of binding affinity to MHC-I molecules. Here we predicted HLA-A2-restricted cytotoxic T lymphocyte epitopes from survivin as a potential target for multiple myeloma. We suggest a procedure for prediction of antigenic peptides which could bind to MHC-I molecule. The results of this study will assist researchers in selection and prediction of noble antigenic peptides.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.