Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2020.10.06.209

Prediction of HLA-A*0201-Restricted Antigenic Epitopes Targeting Multiple Myeloma  

Kang, Yoon Joong (Department of Biomedical Science, Jungwon University)
Publication Information
Journal of Convergence for Information Technology / v.10, no.6, 2020 , pp. 209-216 More about this Journal
Abstract
Protein antigens and their epitopes are targets for epitope based vaccines. There are many prediction servers which can be used for identification of binding peptides to MHC molecules. However, choosing of appropriate prediction servers is difficult. This study compared data obtained from prediction servers and evaluate them in scope of binding affinity to MHC-I molecules. Here we predicted HLA-A2-restricted cytotoxic T lymphocyte epitopes from survivin as a potential target for multiple myeloma. We suggest a procedure for prediction of antigenic peptides which could bind to MHC-I molecule. The results of this study will assist researchers in selection and prediction of noble antigenic peptides.
Keywords
Epitope; MHC-class I; Peptide; Prediction; Multiple myeloma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Ehreth (2003). The value of vaccination: a global perspective. Vaccine, 21(27-30), 4105-4117. DOI : 10.1016/s0264-410x(03)00377-3   DOI
2 V. Brusic, J. T. August & N. Petrovsky. (2005). Information technologies for vaccine research. Expert Rev Vaccines, 4(3), 407-417. DOI : 10.1586/14760584.4.3.407   DOI
3 A. W. Purcell, J. McCluskey & J. Rossjohn. (2007). More than one reason to rethink the use of peptides in vaccine design. Nat Rev Drug Discov, 6(5), 404-414. DOI : 10.1038/nrd2224   DOI
4 P. Riedl, J. Reimann & R. Schirmbeck. (2006). Complexes of DNA vaccines with cationic, antigenic peptides are potent, polyvalent CD8(+) T-cell-stimulating immunogens. Methods in molecular medicine, 127, 159-169. DOI : 10.1385/1-59745-168-1:159
5 S. H. van der Burg, M. S. Bijker, M. J. Welters, R. Offringa & C. J. Melief. (2006). Improved peptide vaccine strategies, creating synthetic artificial infections to maximize immune efficacy. Advanced drug delivery reviews, 58(8), 916-930. DOI : 10.1016/j.addr.2005.11.003   DOI
6 A. Muzzi, V. Masignani & R. Rappuoli. (2007). The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials, Drug Discov Today, 12(11.12), 429-439. DOI : 10.1016/j.drudis.2007.04.008   DOI
7 P. Van Der Bruggen et al. (2002). Tumor specific shared antigenic peptides recognized by human T cells. Immunol Rev, 188, 51-64. DOI : 10.1034/j.1600-065X.2002.18806.x   DOI
8 V. Brusic, V. B. Bajic & N. Petrovsky. (2004). Computational methods for prediction of T-cell epitopes. a framework for modelling testing, and applications. Methods, 34(4), 436-443. DOI : 10.1016/j.ymeth.2004.06.006   DOI
9 G. Parmiani, A. De Filippo, L. Novellino & C. Castelli. (2007). Unique human tumor antigens: immunobiology and use in clinical trials. J Immunol, 178(4), 1975-1979. DOI : 10.4049/jimmunol.178.4.1975   DOI
10 J. Robinson, M. J. Waller, S. C. Fail & S. G. Marsh (2006). The IMGT/HLA and IPD databases. Hum Mutat, 27(12), 1192-1199. DOI : 10.1093/nar/gkz950   DOI
11 B. Korber, M. LaBute & K. Yusim. (2006). Immunoinformatics comes of age. PLoS Comput Biol, 2(6), e71. DOI : 10.1371/journal.pcbi.0020071   DOI
12 K. Yu, N. Petrovsky, C. Schonbach, J. Y. Koh & V. Brusic. (2002). Methods for prediction of peptide binding to MHC molecules: a comparative study, Molecular medicine, 8(3), 137-148. DOI : doi.org/10.1007/BF03402006   DOI
13 B. Peters et al. (2006). A community resource benchmarking predictions of peptide binding to MHC-I molecules. PLoS Comput Biol, 2(6), e65. DOI : 10.1371/journal.pcbi.0020065   DOI
14 B. Trost, M. Bickis & A. Kusalik. (2007). Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Res, 3(1), 5. DOI : 10.1186/1745-7580-3-5   DOI
15 J. A. Swets. (1998). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293. DOI : 10.1126/science.3287615   DOI
16 V. Pasquetto et al. (2005). HLA-A* HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products. J Immunol, 175(8), 5504-5515. DOI : 10.4049/jimmunol.175.8.5504   DOI
17 C. undegaard C, O. Lund, C. Kesmir, S. Brunak & M. Nielsen (2007). Modeling the adaptive immune system: predictions and simulations. Bioinformatics, 23(24), 3265-3275. DOI : 10.1093/bioinformatics/btm471   DOI
18 N. Tiwari, N. Garbi, T. Reinheckel, G. Moldenhauer, G. J. Hammerling & F. Momburg (2007). A transporter associated with antigen-processing independent vacuolar pathway for the MHC class I-mediated presentation of endogenous transmembrane proteins. J Immunol, 178(12), 7932-7942. DOI : 10.4049/jimmunol.178.12.7932   DOI
19 O. Demirel et al. (2007). Identification of a lysosomal peptide transport system induced during dendritic cell development. J Biol Chem, 282(52), 37836-37843. DOI : 10.1074/jbc.M708139200   DOI
20 T. Kurotaki et al. (2007). Efficient cross-presentation by heat shock protein 90-peptide complex-loaded dendritic cells via an endosomal pathway. J Immunol, 179(3), 1803-1813. DOI : 10.4049/jimmunol.179.3.1803   DOI
21 Y. Louzoun, T. Vider & M. Weigert. (2006). T-cell epitope repertoire as predicted from human and viral genomes. Mol Immunol, 43(6), 559-569. DOI : 10.1016/j.molimm.2005.04.017   DOI