• 제목/요약/키워드: 영화 평점

검색결과 53건 처리시간 0.028초

영화평과 평점을 이용한 감성 문장 구축을 통한 영화 평점 추론 (Movie Rating Inference by Construction of Movie Sentiment Sentence using Movie comments and ratings)

  • 오연주;채수환
    • 인터넷정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.41-48
    • /
    • 2015
  • 영화 리뷰 사이트에서 영화 평점은 네티즌들의 주관적 판단으로 결정된다. 이로 인해 그들이 남긴 영화평과 평점 사이의 극성이 서로 불일치하는 경우가 종종 발생한다. 본 논문에서는 이 문제를 해결하기 위해 영화의 평가에 영향을 미치는 감성 문장들의 집합을 만들고, 이들을 영화평에 적용하여 평점을 추론한다. 감성 문장들의 집합을 만들기 위한 과정은 감성 어휘 사전을 구축하는 단계와 감성 문장을 구성하는 단계로 이루어진다. 감성 어휘 사전은 영화평에서 쓰인 형용사와 형용사의 극성을 저장한다. 감성 문장은 영화와 관련된 명사를 주어로 갖고 감성 어휘 사전의 어휘를 서술어로 갖는 문장 구조이다. 감성 문장의 극성과 감성 문장에서 쓰인 서술어의 극성이 다른 문장들은 제거하여 감성 문장들이 감성 어휘 사전 어휘의 극성과 일치되도록 하였다. 영화평에서 쓰인 감성 문장들의 평균 점수를 구하면 영화평이 갖는 감성 점수가 된다. 본 연구 결과를 통해 네티즌들이 매긴 평점에 비해 감성 문장 집합을 적용하여 계산한 영화평의 감성 점수가 영화평에 대한 의견을 더 잘 반영한다는 것을 알 수 있다.

빅데이터를 활용한 영화 흥행에 따른 리뷰길이 변화 (Changes in Review Length Based on the Popularity of Movies Using Big Data)

  • 조용희;박이슬;김혜진
    • 한국콘텐츠학회논문지
    • /
    • 제18권5호
    • /
    • pp.367-375
    • /
    • 2018
  • 본 연구에서는 영화 관람 후 높은 평점을 매긴 집단과 낮은 평점을 매긴 집단 중 어느 집단이 영화에 대해 더 많은 이야기를 하는지, 즉 온라인 리뷰를 길게 작성하는지에 대해 알아보고자 하였다. 이를 위해 네이버 영화 API에서 제공하는 영화 평점과 리뷰 데이터를 수집하였고, 한국영화진흥위원회에서 제공하는 영화 손익분기점 데이터를 이용하여 영화를 흥행성공, 흥행부진, 흥행실패로 구분하여 영화 평점과 리뷰길이 간의 상관관계, 영화 개봉 전과 후, 흥행여부에 따른 리뷰길이의 특성, 마지막으로 영화 평점이 리뷰길이에 영향을 미치는가에 대한 회귀분석을 실시하여 제시하였다.

감정자질과 커널모델을 이용한 영화평 평점 예측 시스템 (A Rating System on Movie Reviews using the Emotion Feature and Kernel Model)

  • 허향란;정형일;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.37-41
    • /
    • 2011
  • 본 논문에서는 최근 많은 관심을 받고 있는 Opinion Mining으로서 사용자들의 자연어 형태의 영화평 문장을 분석하여 자동으로 평점을 예측하는 시스템을 제안한다. 제안 시스템은 영화평 분석에 적합한 어휘 자질, 감정 자질, 가치 자질 및 기타 자질들을 추출하고, 10점 척도의 영화평의 평점을 10개의 범주로 가정하여, 커널모델인 다중 범주 Support Vector Machine (SVM) 모델을 이용하여 높은 성능으로 영화평의 평점을 범주 분류한다.

  • PDF

한국어 관객 평가기반 영화 평점 예측 CNN 구조 (CNN Architecture Predicting Movie Rating from Audience's Reviews Written in Korean)

  • 김형찬;오흥선;김덕수
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권1호
    • /
    • pp.17-24
    • /
    • 2020
  • 본 논문에서는 합성곱 신경망 기반의 영화 평점 예측 구조를 제안한다. 제안하는 구조는 문장 분류을 위하 고안된 TextCNN를 세 가지 측면에서 확장하였다. 첫 번째로 문자 임베딩을 이용하여 단어의 다양한 변형들을 처리할 수 있다. 두 번째로 주목 메커니즘을 적용하여 중요한 특징을 더욱 부각하였다. 세 번째로 활성 함수의 출력을 1-10 사이의 평점으로 만드는 점수 함수를 제안하였다. 제안하는 영화 평점 예측 구조를 평가하기 위해서 영화 리뷰 데이터를 이용하여 평가해 본 결과 기존의 방법을 사용했을 때보다 더욱 낮은 MSE를 확인하였다. 이는 제안하는 영화 평점 예측 구조의 우수성을 보여 주었다.

영화리뷰 감성 분석을 통한 평점 예측 연구 (Sentiment Analysis of movie review for predicting movie rating)

  • 조정태;최상현
    • 경영과정보연구
    • /
    • 제34권3호
    • /
    • pp.161-177
    • /
    • 2015
  • 인터넷 포털은 많은 양의 정보를 빠르고 쉽게 이용 할 수 있다는 특성 때문에 지속적으로 영향력이 커지고 있다. 웹 이용자들은 다양한 정보 습득, 네티즌 간의 정보 교환 등 다양한 목적을 위해 포털 사이트를 사용하고 있다. 문화콘텐츠 이용자들은 타인의 경험을 미리 알아보기 위해 포털 사이트에서 정보를 검색한 후 해당콘텐츠를 사용하고 개인적인 의견을 게시하기도 한다. 영화를 보고자 하는 이용자들은 관련 정보를 검색하고 얻는 과정에서 영화에 대한 다른 이용자들이 게시한 다양한 정보들을 접하게 된다. 영화 관련 포털사이트에서는 영화에 대한 제한된 글자수의 리뷰와 평점을 제공하는데 이와 같은 정보의 영향으로 영화에 대한 태도를 형성할 뿐 아니라, 영화 관람 여부를 결정하도록 만들 수 있다. 하지만 영화 리뷰는 사용자가 전체를 읽을 수 없기 때문에 일부 리뷰와 리뷰 개개의 평점보다는 전체 평점을 참고 하여 의사결정을 하는 정도가 대부분이다. 이처럼 전체 평점만을 참고하게 되면 편향적인 정보 습득으로 인하여 잘못된 판단을 할 수 있게 된다. 이러한 리뷰의 특성에도 불구하고 리뷰는 사용자의 의견을 풍부하게 드러내고 영화를 보지 않은 다른 이용자들의 선택에 영향을 미친다는 점에서 다양한 실용적 활용성을 갖는 데이터임은 분명하다. 본 연구에서는 리뷰 데이터를 활용하여 평점을 예측하기 위한 평점예측 연구를 수행하였다. 리뷰테이터를 형태소로 추출하고 형태소별로 극성값을 계산하여 리뷰에 대한 평점을 예측하는 모형으로서, 기존의 긍부정 값만을 근거로 하는 모형에 비해 정확도가 높아진 것을 확인하였다.

  • PDF

스토리텔링으로 흥행한 영화 분석(세 얼간이 중심으로) (A Study on analysis movie performance of Story Telling (3idiots centralize))

  • 주헌식
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2012년도 춘계 종합학술대회 논문집
    • /
    • pp.325-326
    • /
    • 2012
  • 세 얼간이는 국내 포탈 사이트에 평점 등록한 네티즌만 2만여 명이 넘었으며, 네이버 9.43, 다음 9.7, 네이트 9.5 등의 평점으로 역대 영화 평점 순위 1위를 차지했다. 반지의 제왕 같은 판타지 블록버스터, 타이타닉, 대부 등 세계적인 흥행으로 전설이 되어버린 작품들의 기록을 뛰어넘는 것으로 전 세계 부동의 흥행 1위 아바타를 뛰어넘고, 700억 원이 넘는 수익을 창출했다. 세 얼간이가 성공할 수 있었던 것은 몇 가지로 볼 수 있는데 영화 전편에 걸친 스토리텔링과 비선형적 스토리구성, 모션의 활용, 사운드의 활용, 이벤트의 활용 등 인터랙션과 스토리텔링의 효과가 우수하였다고 사료한다.

  • PDF

중국 영화시장의 흥행성과에 영향을 미치는 요인 : 2010~2014년 개봉 영화를 대상으로 (Factors Affecting the Box Office Performance in the Chinese Film Market: Focusing on Films Released in 2010~2014)

  • 정결운;박경우;장병희
    • 한국콘텐츠학회논문지
    • /
    • 제17권6호
    • /
    • pp.296-310
    • /
    • 2017
  • 본 연구는 중국에서 개봉된 영화의 흥행성과에 영향을 미치는 요인들을 발견하고자 하였다. 중국 영화 시장의 2010~2014년도 흥행 100위권 내 영화 총 499편을 분석대상으로 설정하였다. 선행연구에 기초하여 종속변수로 영화 박스오피스 실적을 선정하였고, 독립변수로는 영화 장르, 배우파워, 감독파워, 속편, 리메이크, 상영시기, 수상경력, 온라인 평점, 배급사, 제작지역을 투입하였다. 회귀분석 결과, 장르, 수상경력, 속편, 리메이크, 상영시기, 제작지역, 감독파워, 배우파워(제2주연), 온라인 평점이 중국 개봉 영화의 박스오피스 실적에 유의미한 영향을 미치는 것으로 나타났다. 특히, 온라인 평점과 속편의 영향력이 상대적으로 높게 나타났다. 이러한 결과는 중국 영화시장을 대상으로 마케팅 및 제작 전략을 수립할 때 효과적으로 활용할 수 있을 것이다.

중국내 극장 개봉영화 흥행에 영향을 미치는 요인 (Factors Affecting Box Office Performance in China)

  • 기선;유세경
    • 한국콘텐츠학회논문지
    • /
    • 제18권5호
    • /
    • pp.357-366
    • /
    • 2018
  • 본 연구는 2015년 중국 극장에서 개봉된 200편 영화를 대상으로 영화 흥행 수익에 영향을 미치는 요인들에 대해 분석하였다. 회귀분석결과 중국 극장 개봉영화 흥행에 유의미하게 영향을 미치는 요인들은 주연배우인기지수, 온라인평점, 제작사 파워, 중국제작영화여부 였으며, 배급사 파워, 영화의 장르, IP활용여부, 제작사/배급사 결합여부는 유의하지 않은 것으로 나타났다. 이는 영화의 장르가 주요한 영향을 미쳤던 기존 연구결과와는 차이가 있으며, 인터넷으로 평가되는 주연 배우 인기지수, 온라인 평점 등이 흥행수익에 영향을 미치는 가장 중요한 요소로 나타나 중국 극장에서 상영되는 영화 흥행에 온라인 마케팅 요소가 영향을 미치는 주요한 요인으로 부각되고 있음을 알 수 있다.

잠재요인 모델 기반 영화 추천 시스템 (Movie Recommendation System based on Latent Factor Model)

  • ;김강철
    • 한국전자통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.125-134
    • /
    • 2021
  • 영화 산업의 빠른 발전으로 영화의 제작 수가 급격하게 증가하고 있으며, 영화 추천 시스템은 관객들의 과거 행동이나 영화 후기에 기반하여 관객들의 선호도를 예측하여 영화의 선택에 도움을 주고 있다. 본 논문은 평점의 평균과 편향의 보정을 이용하여 잠재요인 모델에 기반한 영화 추천 시스템을 제안한다. 특이값 분해 방법이 평점 매트릭스 분해에 사용되고, 통계 경사 하강법이 최소자승 손실 함수의 파라미터 최적합에 사용된다. 그리고 평균 제곱근 오차를 사용하여 제안한 시스템 성능을 평가한다. Surprise 패키지를 이용하여 제안한 시스템을 구현 하였으며, 모의실험 결과는 평균 제곱근 오차가 0.671이며, 다른 논문에서 방법에 비하여 좋은 성능을 가진다는 것을 확인하였다.

네이버 영화 리뷰 데이터를 이용한 의미 분석(semantic analysis) (Semantic analysis via application of deep learning using Naver movie review data)

  • 김소진;송종우
    • 응용통계연구
    • /
    • 제35권1호
    • /
    • pp.19-33
    • /
    • 2022
  • SNS의 등장으로 인터넷 이용자들이 온라인에 남기는 텍스트의 양이 방대해지고 그 중요성이 강조되고있다. 특히 네이버의 영화 탭에서 볼 수 있는 영화 평점이나 리뷰는 실제로 관객들이 영화를 보기 전 해당 영화를 볼 것인지 결정하는 데 주요 요인이 되기도 한다. 본 연구는 실제 네이버 영화 리뷰 데이터를 가지고 평점을 예측하는 분석을 수행했다. 영화 리뷰 데이터를 분석하기 위해 평점의 분포를 통해 데이터 특성을 살펴보았고, 텍스트의 의미를 분석하기 위해 형태소 분석을 통한 한국어 자연어처리를 수행했다. 또한 평점 예측에 활용할 모델 선택을 위해 2-Class와 multi-Class 문제들에 대해 머신러닝과 딥러닝, 회귀와 분류 분석을 비교했으며, 오분류의 원인을 영화 리뷰 데이터 특성과 연관시켜 서술했다.