• Title/Summary/Keyword: 영재교육원

Search Result 395, Processing Time 0.027 seconds

An Analysis of Structural Equation Model on the Scientific Problem Finding Ability of the Scientifically Gifted Based on Science Related Attitude, Motivation, and Self-regulation Learning Strategy (과학영재의 과학문제발견력 관련변인에 대한 구조방정식모형 분석: 과학관련태도와 동기 및 자기조절 학습전략을 중심으로)

  • Kim, Mpmg-Sook;Han, Ki-Soon
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.1
    • /
    • pp.23-52
    • /
    • 2008
  • The purpose of this study was to examine the Structural Equation Model (SEM) of scientific problem finding ability based on science related attitude, motivation and self-regulation learning strategy of the gifted in science. A total of 153 scientifically gifted students were selected from a university-based Sifted education center The instruments used for the study were Test of Science-Related Attitudes, Motivated Strategies for Learning Questionnaire (MSLQ), and Science Problem Finding Test. In order to examine Structural Equation Model (SEM) of scientific problem finding ability, we assumed scientific problem finding model related to science inquiry, model I (domain specific), and scientific problem finding model related to creativity, model II (domain general) The results of this research are as follows. First, the correlations between science related attitudes and MSLQ were significant; motivation and self-regulated learning strategy as sub factors were positively correlated to science related attitudes. Only scientific attitude as a sub factor of science related attitudes was significantly correlated to elaboration of creativity category in scientific problem finding ability. In other hand, self-regulated learning strategy was significantly correlated to elaboration, inquiry motivation and inquiry level in scientific problem finding ability. Second, as the results of SEM analysis, we confirmed model I and model II were the best adequate through the indices of best fit (TLI, CFI>.90, RMSEA<.08); scientific problem finding ability was directly influenced motivation and self-regulated learning strategy but science related attitudes indirectly influenced scientific problem finding ability through motivation and self-regulated learning strategy. Based on the results, the implications for science gifted education were discussed.

Analysis on the Thinking Characteristics of the Mathematically Gifted Students in Modified Prize-Sharing Problem Solving Process (변형된 상금 분배 문제의 해결과정에 나타나는 초등학교 수학영재들의 사고 특성 분석)

  • Kim, Woo-Hyun;Song, Sang-Hun
    • School Mathematics
    • /
    • v.11 no.2
    • /
    • pp.317-333
    • /
    • 2009
  • The purpose of this study was to examine the thinking characteristics of mathematically gifted elementary school students in the process of modified prize-sharing problem solving and each student's thinking changes in the middle of discussion. To determine the relevance of the research task, 19 sixth graders enrolled in a local joint gifted class received instruction, and then 49 students took lessons. Out of them, 19 students attended a gifted education institution affiliated to local educational authorities, and 15 were in their fourth to sixth grades at a beginner's class in a science gifted education center affiliated to a university. 15 were in their fifth and sixth grades at an enrichment class in the same center. Two or three students who seemed to be highly attentive and express themselves clearly were selected from each group. Their behavioral and teaming characteristics were checked, and then an intensive observational case study was conducted with the help of an assistant researcher by videotaping their classes and having an interview. As a result of analyzing their thinking in the course of solving the modified prize-sharing problem, there were common denominators and differences among the student groups investigated, and each student was very distinctive in terms of problem-solving process and thinking level as well.

  • PDF

A Study on the Effects of Creative STEAM System Given by Center of Gravity Experiment (창의적 융합교육을 위한 무게중심 프로그램 개발과 적용사례 연구)

  • Kim, Su Geum;Ryu, Shi Kyu;Kim, Sun Bae
    • Journal of Educational Research in Mathematics
    • /
    • v.24 no.3
    • /
    • pp.333-357
    • /
    • 2014
  • This study resulted from a study regarding creative STEAM System based upon an experiment with the center of gravity. The results of the study are constructed by a fusion of mathematics and physics, showing that they are the same as mathematical calculations. Also, students can find that center of gravity of an object is in equilibrium on a metal rod when the center of gravity exactly is placed on the rod. The fact that an experimental results are correspond to calculations can maximize the effectiveness of teaching. And also this study has the following effectiveness. First, the exact construction and calculations arouses good competition among students. Second, this experiment can give students a motivation for study and increase their thinking in classes because the theoretical background of center of gravity experiment is basically attributed to math and science classes in school. This study includes three different types of center-of-gravity experiments. One is a simple type of experiment in which center of gravity exists inside of an object. Another is a complicated one in which the center of gravity is also inside of an object. However, the third type is an experiment in where the center of gravity is outside of an object. Therefore, it gives students an opportunity to discuss how to confirm equilibrium on a metal rod when the object has its center of gravity outside. Having discussions in class will allow students to have a critical way of thinking. In addition, searching for a way to solve a problem will increase creativity of students as well. And the last type is finding the center of gravity of a big acrylic panel where multiple objects are on the panel. According to the survey and interview conducted by students who participated in this program, teaching based on creative STEAM system helps students to get a better understanding and more fast acquisition of knowledge. We can expect that a well-planned creative STEAM system through a continuous study will be both effective and efficient in educating critical and creative students.

  • PDF

Analyzing the Effectiveness of Argumentation Program to Conceptualize the Concept of Natural Selection for Elementary Science-Gifted Students (초등과학영재들의 자연선택 개념 형성을 위한 논변활동 효과 분석)

  • Park, Chuljin;Cha, Heeyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.4
    • /
    • pp.591-606
    • /
    • 2016
  • The purpose of this study is to develop the argumentation program to build scientific concepts on natural selection for science-gifted elementary students and to know how to implement this program. For this study, nine key concepts about natural selection such as the overproduction of offspring, limited resources, population stability, competition, variation, heredity of variation, differential survival, change of the population and speciation were selected through the literature study. The programs were developed by learning cycle instructional model. Argument writings and discourses have been collected, analyzed and compared before and after the program. Two questionnaires to compare pre and post concept change consist of multiple choice questionnaire and open-ended response question were developed and applied to 19 science-gifted elementary students. Sufficiency of the explanation and conceptual quality of the explanation were used to assess the quality of their arguments before and after the program. Discourse and visual models collected from the highest and lowest group about score improvement were compared. The scores of the gifted statistically improved significantly in multiple choice questionnaire. Students' alternative conceptions about natural selection at the beginning of the program decreased and changed scientifically after the program. Visual models drawn by the students supported the results as well. This study asserts that elementary science-gifted students are able to explain evolutionary perspectives about organism change and use the key concepts of natural selection. The study means that evolutionary perspective is possible to be reflected in elementary science curriculum for the gifted.

An Analysis on the Level of Evidence used in Gifted Elementary Students' Debate (초등과학 영재의 논증활동에서 사용된 증거의 수준 분석)

  • Cho, Hyun-Jun;Yang, Il-Ho;Lee, Hyo-Nyong;Song, Yun-Mi
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.5
    • /
    • pp.495-505
    • /
    • 2008
  • The purpose of this study was to analyze the level of evidence used in gifted elementary students' argumentation. The subjects were 15, 5th and 6th grade students selected in the Science Education Institute for Gifted Youth in K University. After the argumentation task was given to students 2 weeks ago, the students grouped themselves in the affirmative and negative and took part in a debate for 2 hours. Their argumentation process was observed, recorded and transcribed for analysis. Transcribed data was given a Protocol Number according to priority and was examined to find out what were the characteristics when students participated in the task. The evidence used in argumentation was graded from level 1 to level 6 according to Perella's Hierarchy of Evidence and the rate of frequency classified by the level was expressed in graph. Students used Level 1- Level 2 evidence above 50% without for or against task. They had weak argumentation making use of low-level evidence such as individual experience, opinion and another person's experience rather than objective evidences. On the other hand, students commented on the lack of opponent's evidence when they could not trust an opponent's evidence. If one team asked the other to present more evidence but could not, they disregarded the question and turned to another topic. And in cases where the opponent team refuted with evidences of high level, the other team just repeated their claim or evaded the rebuttal. The students tended to complete the argument without the same conclusions with some interruptions. The results show that we need an educational programs including scientific argumentation for science-gifted elementary school students.

A Study on Automatic Classification of Profanity Sentences of Elementary School Students Using BERT (BERT를 활용한 초등학교 고학년의 욕설문장 자동 분류방안 연구)

  • Shim, Jaekwoun
    • Journal of Creative Information Culture
    • /
    • v.7 no.2
    • /
    • pp.91-98
    • /
    • 2021
  • As the amount of time that elementary school students spend online increased due to Corona 19, the amount of posts, comments, and chats they write increased, and problems such as offending others' feelings or using swear words are occurring. Netiquette is being educated in elementary school, but training time is insufficient. In addition, it is difficult to expect changes in student behavior. So, technical support through natural language processing is needed. In this study, an experiment was conducted to automatically filter profanity sentences by applying them to a pre-trained language model on sentences written by elementary school students. In the experiment, chat details of elementary school 4-6 graders were collected on an online learning platform, and general sentences and profanity sentences were trained through a pre-learned language model. As a result of the experiment, as a result of classifying profanity sentences, it was analyzed that the precision was 75%. It has been shown that if the learning data is sufficiently supplemented, it can be sufficiently applied to the online platform used by elementary school students.

Development of Speech recognition emotion analysis program using machine learning (기계학습을 활용한 음성인식 감정분석 프로그램 개발)

  • Lee, Sangwoo;Yoon, Yeongjae;Lee, KyungHee;Cho, Jungwon
    • Proceedings of The KACE
    • /
    • 2018.08a
    • /
    • pp.71-73
    • /
    • 2018
  • 사람의 음성이 가진 고유한 특성을 이용하여 그 안에 담긴 감정을 분석하여 파악할 수 있다면 효과적인 의사소통이 가능할 것이다. 본 연구에서는 음성이 가진 피치 값과, 속도의 변화와 같은 요소를 데이터화 하여 그 안에 담긴 감정을 기계학습을 통해 분류 및 예측하는 과정을 거친다. 감정 별 음성 데이터 분석을 위해 다양한 기계학습 알고리즘을 활용하며 선행 연구들보다 높은 정확도로 신뢰할 수 있는 측정 결과를 제공해 줄 수 있을 것이다. 이를 통해 음성만으로 사람의 감정을 파악하여 효과적인 의사소통 및 다양한 분야에 활용될 수 있을 것으로 기대한다.

  • PDF

How the Science Gifted Connect and Integrate Science Concepts in the Process of Problem Finding (과학영재들이 문제발견 과정에서 나타내는 과학개념 연결방식과 융합적 사고의 특징)

  • Park, Mi-jin;Seo, Hae-Ae
    • Journal of Science Education
    • /
    • v.42 no.2
    • /
    • pp.256-271
    • /
    • 2018
  • The study aimed to investigate how the science gifted connect and integrate science concepts in the process of problem finding. Research subject was sampled from 228 applicants for a science gifted education center affiliated with a university in 2015. A creative problem solving test (CPST) in science, which administered as an admission process, was utilized as a reference to sample two groups. Sixty-seven students from top 30% in test scores were selected for the upper group and 64 students from bottom 30% in test scores were selected for the lower group. The CPST, which was developed by researchers, included one item about how to connect two science concepts among eight science concepts, sound, electricity, weight, temperature, respiration, photosynthesis, weather, and earthquake extracted from elementary science curriculum. As results, there were differences in choosing two concepts among four science major areas. The ways of connecting science concepts were characterized by three categories, relation-based, similarity-based, and dissimilarity-based. In addition, relation-based was characterized by attributes, means, influences, predictions, and causes; similarity-based was by attributes, objects, scientific principles, and phenomena, and dissimilarity-based was by parallel, resource, and deletion. There were significant (p<.000) differences in ways of connecting science concepts between the upper and the lower groups. The upper group students preferred connecting science concepts of inter-science subjects while the lower group students preferred connecting science concepts of intra-science subject. The upper group students showed a tendency to connect the science concepts based on similarity. In contrast, the lower group students frequently showed ways of connecting the science concepts based on dissimilarity. In particular, they simply parallelled science concepts.

A Study on Science Gifted Students' Perceived Parental Behavior, Self-Esteem, and Emotional Intelligence (과학영재학생들이 지각하는 부모의 양육행동, 자아존중감 및 정서지능에 관한 연구)

  • Chae, Yoojung;Lee, Young Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.4
    • /
    • pp.695-707
    • /
    • 2013
  • The purpose of this study is to investigate relationships among gifted students' perceived parental behavior of their parents, self-esteem, and emotional intelligence. The sample includes 91 6th-11th grade gifted students enrolled at a gifted program in a University. The surveys, administered in March, 2012, assess self-esteem, emotional intelligence, and the parental behavior of the parents of gifted students. Data were collected and analyzed by the researchers, using SPSS 18.0. The results are as follows: 1) Each of the 10 item's mean score is over 4.0, and the total mean scores on self-esteem is 4.36 out of 5 (SD=.546), showing positive responses. 2) The mean scores of two aspects of emotional intelligence were close to 4, showing positive perception. 3) The mean scores on perception of a father's and a mother's behavior are at 3.89 and 4.10, respectively; the three factors of perception among fathers (care, trust, and respect) are close to 4.0, while care (3.57) was somewhat low; the perception among mothers is at 4.31 (care), 4.20 (lesson), 4.01 (respect), and 3.96 (trust), showing statistical differences between fathers and mothers. 4) The correlation existed between self-esteem and emotional intelligence, between self-esteem and the four aspects of parental behavior, and between emotional intelligence and parental behavior. 5) Regression analyses showed that respect (${\beta}$=.422, p<.001) among fathers, and trust (${\beta}$=.450, p<.001) among mothers affected students' self-esteem; lessons (${\beta}$=.414, p<.001) and trust (${\beta}$=.280, p<.01) among fathers and lessons (${\beta}$=.450, p<.001) and respect (${\beta}$=.331, p<.01) among mothers affected students' emotional intelligence. The implication of this study, limitation, and future study ideas are suggested at the end of this paper.

Gifted Elementary Students' Understandings about Earth Systems and Environmental Problems (지구계와 환경문제에 대한 초등학교 과학영재학생들의 인식)

  • Jung, Jaehwa;Lee, Hyonyong;Go, Soojin;Oh, YoungJai
    • Journal of the Korean earth science society
    • /
    • v.33 no.7
    • /
    • pp.672-682
    • /
    • 2012
  • The purpose of this study is to investigate elementary school science gifted students' perceptions about Earth systems and environmental problems. A total of 28 students in the attached center for science gifted education to the university participated in this study. Through the survey, participating students were asked to respond to their self-reported knowledge level, the perceived danger levels, certainty, and tangibility of the selected 13 Earth environmental problems. The DAET (Draw-An-Earth Test)-Checklist were developed and used to analyze the images of the Earth drawn by students. Additional interviews were conducted to clarify the meanings and components of students' image. Results indicated that a total of 80 components regarding Earth systems, 11 components of Earth systems interaction, and 4 components related to Earth systems literacy were identified through the DAET-Checklist and additional interviews. Regarding the students' self-reported knowledge level, they reported that they were most knowledgeable about air pollution, global warming, and water pollution. and they also recognized global warming, air pollution, and water pollution as the most dangerous problem. Results indicated that participants were certain that acid rain, air pollution, and water pollution were problematic, and that acid rain, air pollution, and forest desertification were tangible issues. It is anticipated that this study contributes to understanding the elementary school science gifted students' perceptions toward the selected Earth systems and environmental problems.