• 제목/요약/키워드: 영역확장 Clustering

검색결과 49건 처리시간 0.027초

Regularization을 이용한 Possibilistic Fuzzy C-means의 확장 (An Extension of Possibilistic Fuzzy C-means using Regularization)

  • 허경용;남궁영환;김성훈
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means(FCM)와 possibilistic c-means(PCM)는 퍼지 클러스터링 영역에서 대표적인 두 가지 방법으로 많은 패턴 인식 문제들에 성공적으로 활용되어져 왔다. 하지만 이들 방법 역시 잡음 민감성과 중첩 클러스터 문제를 가지고 있다. 이들 문제점을 극복하기 위해, 최근 두 방법을 결합하려는 시도가 있어왔고, possibilistic fuzzy c-means(PFCM)는 FCM과 PCM을 목적 함수 단계에서 통합함으로써 두 방법이 가지는 문제점을 완화시키는 성공적인 결과를 보여주었다. 이 논문에서는 PFCM에 regularization을 도입함으로써 PFCM의 잡음 민감성을 한층 더 줄여줄 수 있는 향상된 PFCM을 소개한다. Regularization은 해공간을 평탄화 함으로써 잡음의 영향을 줄이는 대표적인 방법 중 하나이다. 제안한 방법은 PFCM의 장점과 더불어 regularization에 의해 잡음의 영향을 더욱 줄일 수 있으며, 이는 실험을 통해 확인할 수 있다.

산업분야에서의 지식 정보 추출에 대한 비교연구 (Comparative Study of Knowledge Extraction on the Industrial Application)

  • 우영광;김성신;배현;우광방
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.251-254
    • /
    • 2003
  • 데이터는 어떤 특성을 나타내는 언어적 또는 수치적 값들의 표현이다. 이러한 데이터들을 목적에 따라 구성한 것이 정보이며, 문제 해결이나 패턴 분류, 또는 의사 결정을 위해 정보들간의 관계를 규칙으로 체계화하는 것이 지식이다. 현재 대부분의 산업 분야에서 시스템에 대한 이해를 높이고 시스템의 성능을 향상시키기 위해 지식을 추출하고, 적용시키는 작업들이 활발히 이루어지고 있다. 지식 정보의 추출은 지식의 획득, 표현, 구현의 단계로 구성되며 이렇게 추출된 지식 정보는 규칙으로 도출된다. 본 논문에서는 여러 산업 분야에 걸쳐 다양하게 적용되는 지식 정보 추출 방법들에 대해 그 영역별로 알아보고 여러 시험 데이터들과 실제 시스템에 클러스터링(CL), 입력공간 분할(ISP), 뉴로-퍼지(NF), 신경망(NN), 확장 행렬(EM) 등의 방법들을 적용시킨 결과들을 비교 분석하고자 한다.

  • PDF

Motif 기반의 단백질 군집화 (Motif-Based Protein Clustering)

  • 진훈;김현식;김인철
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.235-237
    • /
    • 2002
  • motif란 기능적으로 유사한 단백질 군의 아마노산 서열들에 공통적으로 나타나는 일정한 패턴이나 부분서열을 말한다. 본 논문에서는 motif들로 각 단백질의 특성을 표현한 다음, 이것을 기초로 유사성을 비교하여 단백질들을 기능적으로 유사한 여러개의 계층적 군으로 나누는 군집화 방법을 소개하였다. 영역 특성상 확장성과 계층성을 가지는 신경망 GHSOM을 군집화 알고리즘으로 사용하였고, 실제 307 개의 단백질들에 대한 군집화 실험을 통해 그 효과를 확인해보았다.

  • PDF

비지도 학습 기반 클러스터링 기법을 활용한 도심 물류 배송지 최적화 연구 (A Study on Optimization for Delivery Destination Clustering using Unsupervised Learning)

  • 전형준;임희석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.483-486
    • /
    • 2022
  • 최근 이커머스 시장의 지속적인 성장으로 빠른 배송과 대용량 물류 처리를 위한 효율적 배송 시스템 마련의 필요성이 증가하고 있다. 본 연구에서는 도심 물류 거점에서의 현재 배송 물량 할당의 불균등 문제를 실무적 관점에서 정의하고, 비지도 학습 기반 클러스터링 기법을 통해 불균등 배송 할당 문제를 개선해 보고자 했다. 분석 결과 K-means++ 알고리즘 기반 클러스터링에서 최적화된 물량 할당에 대한 개선 가능성을 검증할 수 있었다. 향후 지형 정보, 교통량 등의 상세 변수를 추가하여 머신러닝 기반의 물류 배송 최적화를 위한 연구 영역을 확장할 수 있을 것으로 기대된다.

무인차량 자율주행을 위한 레이다 영상의 정지물체 너비추정 기법 (Width Estimation of Stationary Objects using Radar Image for Autonomous Driving of Unmanned Ground Vehicles)

  • 김성준;양동원;김수진;정영헌
    • 한국군사과학기술학회지
    • /
    • 제18권6호
    • /
    • pp.711-720
    • /
    • 2015
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance have been reported. Since several pixels per an object may be generated in a close-range radar application, a width of an object can be estimated automatically by various signal processing techniques. In this paper, we tried to attempt to develop an algorithm to estimate obstacle width using Radar images. The proposed method consists of 5 steps - 1) background clutter reduction, 2) local peak pixel detection, 3) region growing, 4) contour extraction and 5)width calculation. For the performance validation of our method, we performed the test width estimation using a real data of two cars acquired by commercial radar system - I200 manufactured by Navtech. As a result, we verified that the proposed method can estimate the widths of targets.

기업 보유역량 기반의 잠재 유망 기술-제품 포트폴리오 도출에 관한 연구 (Study on the Emerging Technology-Product Portfolio Generation Based on Firm's Technology Capability)

  • 이용호;권오진;고병열
    • 기술혁신학회지
    • /
    • 제14권spc호
    • /
    • pp.1187-1208
    • /
    • 2011
  • 본 연구는 기업의 보유자원(역량) 기반 관점에서 기업이 필요로 하는 유망기술 도출 모형을 제시하고자 하였다. 이를 위해서 첫째, 중소기업과 유망기술에 대한 고찰을 통해 중소기업이 필요로 하는 유망기술에 대해 개념적으로 정의하였다. 둘째로, 연구의 개념적 틀을 제시하고 X사의 사례 분석을 통하여 제시된 연구의 틀에 대한 유용성을 검증하였다. 기업이 진입해 있는 기술, 용도, 제품분야 키워드를 기준으로 기업의 진입영역을 대리하는 참조특허집합(reference patent set)을 구성하였다. 분석데이터는 참조특허집합을 두 단계까지 전방인용(forward citation)한 특허로 대상을 확장하여 구성하였다. 분석특허 풀에서 전문가가 선정한 키워드를 기준으로 클러스터 분석을 수행하고 클러스터의 활동성, 참조특허집합과의 관련성 지표를 기준으로 군집별 유망성을 분류하였다. 마지막으로 기업이 접근 가능한 영역에 대한 잠재 포트폴리오를 표현하고 기업이 단계적으로 접근가능한 유망영역, 모니터링 대상, 모니터링 제외대상 영역을 도출하였다.

  • PDF

경계범주 자동탐색에 의한 확장된 학습체계 구성방법 (Construction Scheme of Training Data using Automated Exploring of Boundary Categories)

  • 최윤정;지정규;박승수
    • 정보처리학회논문지B
    • /
    • 제16B권6호
    • /
    • pp.479-488
    • /
    • 2009
  • 본 논문은 기존의 목표항목만을 위주로 한 학습체계에서 발생하는 오분류 문제의 해결을 위해 기존의 학습체계에 경계항목을 자동으로 탐 색하여 포함시켜 확대시키는 방법을 제안하고 있다. 여러 주제에 걸쳐 다양한 내용을 다루는 복잡한 문서들은 확실히 어느 범주로 분류해야 할 지 판가름하기 어려운 성질인 모호성이 강하다. 이러한 경우 모든 경우들을 정확히 구분할 수 있는 최적의 경계를 찾는 일은 더욱 어려운 일이 다. 복잡하고 불확실성이 높은 데이터들의 특징은 대부분 분류 경계영역에 위치하므로 이러한 분류경계의 데이터들을 새로운 학습 항목으로 인 식시키도록 하는 것이 필요하다. 본 연구에서는 주어진 목표항목 사이의 경계항목을 자동으로 탐색하여 학습체계에 추가하는 학습 체계 확장 알고리즘을 제시하고, 의도적인 학습오류를 발생시킨 후 기존방법과의 비교실험을 수행함으로써 제안방법의 정확성과 안정성을 비교하였다. 실 험결과 경계범주를 포함하여 학습 체계를 확장시켰을 때의 예측력은 기존 0.70에서 0.86으로 약 24% 향상 되었고, 오류를 포함시켰을 때의 예 측력은 기존 0.52에서 0.79로 약 49% 향상되었다.

계층 자료구조의 결합과 3차원 클러스터링을 이용하여 적응적으로 부하 균형된 GPU-클러스터 기반 병렬 볼륨 렌더링 (Adaptive Load Balancing Scheme using a Combination of Hierarchical Data Structures and 3D Clustering for Parallel Volume Rendering on GPU Clusters)

  • 이원종;박우찬;한탁돈
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권1_2호
    • /
    • pp.1-14
    • /
    • 2006
  • 대용량 볼륨 데이타를 가시화하는 효과적인 방법인 후-정열 병렬 렌더링은 부하균형에 의해 성능이 결정된다. 기존의 정적 데이타 분할 방법은 태스크 병렬성만의 관점에서는 자기균형을 쉽게 얻을 수 있었지만, 데이타 내부의 빈 공간을 고려하지 않았기 때문에 데이타 병렬성의 관점에서는 심각한 불균형을 초래할 수 있었다. 본 논문은 태스크 병렬성과 데이타 병렬성이 함께 고려된, 적응적이며 확장적인 부하 균형 기법을 제안한다. 우리는 계층적 자료 구조인 옥트리와 BSP-트리를 효과적으로 결합하여 볼륨 데이타의 실제 영역만을 추출하여 렌더링 노드들로 균등하게 분산시켰으며, 각 렌더링 노드들에서는 3차원 클러스터링 알고리즘을 적용하여 렌더링 순서를 효과적으로 결정하였다. 제안하는 방법은 기존의 정적 데이타 분산 기법에 비해 최대 22배의 병렬성을 높였고 동기화 비용을 낮추어 렌더링 성능을 크게 향상시켰음을 실험을 통해 알 수 있었다.

k-평균 클러스터링 알고리즘 기반의 영상 분할을 이용한 칼라코드 검출 및 인식 (Color Code Detection and Recognition Using Image Segmentation Based on k-Means Clustering Algorithm)

  • 김태우;유현중
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1100-1105
    • /
    • 2006
  • 칼라코드는 획득된 영상에서 칼라의 심각한 왜곡 때문에 그 응용 확장에 어려움이 있었다. 칼라 인식에서 칼라 왜곡의 영향을 줄이기 위해서는 규칙적으로 샘플링된 몇 개의 화소들을 이용하기 보다는 가능한한 각 칼라 영역에서 많은 화소들을 통계적으로 처리하는 것이 더 바람직하다. 이를 위해서는 일반적으로 에지 검출이 필요한 분할이 필요하다. 그러나, 칼라코드에서 에지들은 분할을 불완전하게 만드는 지퍼 효과나 반사와 같은 다양한 왜곡에 의해 끊어질 수 있고, 에지 연결 또한 어려운 처리 과정이다. 본 논문에서는 칼라 인식에서 칼라 왜곡의 영향을 줄이기 위한 좀 더 효과적인 방법은 분할을 위한 정확한 에지 검출을 배제하는 방법으로 k-평균 클러스트링 알고리즘을 적용하였다. 또한, 칼라코드 검출에서 6개의 안전한 칼라와 그레이 성질 모두 이용하였다. 실험은 4M-화소 크기의 야외영상 144장에 대해 수행되었다. 제안한 방법은 테스트 영상에 대해서 100%의 칼라코드 검출율을 나타내었고, 검출된 코드에 대해서는 99% 이상의 평균 칼라 인식 정확도를 보였다. 여기서 가장 높은 정확도를 보인 캐니 에지 검출법을 사용한 경우 91.28%로 나타났다.

  • PDF

클러스터 기반 퍼지 모델트리를 이용한 데이터 모델링 (Data Modeling using Cluster Based Fuzzy Model Tree)

  • 이대종;박진일;박상영;정남정;전명근
    • 한국지능시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.608-615
    • /
    • 2006
  • 본 논문에서는 퍼지 클러스터 기법을 이용하여 구간 분할된 퍼지 모델트리의 제안과 이를 이용한 데이터 모델링 기법을 다룬다. 제안된 방법은 먼저 입력과 출력변수의 속성을 고려한 퍼지 클러스터링에 의해 중심벡터를 계산한 후, 중심벡터들과 입력속성간의 소속도를 이용하여 구간 분할된 영역별로 각각의 선형모델을 구축한다. 노드의 확장은 부모노드(parent node)에서 만들어진 모델에서 계산된 오차값과 자식노드(child node)에서 계산된 오차값을 비교하여 이루어진다. 출력값 예측 단계에서는 입력된 데이터와 잎노드에서 계산된 클러스터 중심값과 비교하여 소속도가 높은 선형모델을 선택하여 데이터에 대한 출력값을 예측하게 된다. 제안된 방법의 우수성을 보이기 위해 다양한 데이터를 대상으로 실험한 결과, 기존의 모델트리방식 및 뉴럴 네트워크 기반의 신경회로망 보다 향상된 성능을 보임을 알 수 있었다.