Abstract
This paper proposes a fuzzy model tree consisting of local linear models using fuzzy cluster for data modeling. First, cluster centers are calculated by fuzzy clustering method using all input and output attributes. And then, linear models are constructed at internal nodes with fuzzy membership values between centers and input attributes. The expansion of internal node is determined by comparing errors calculated in parent node with ones in child node, respectively. As a final step, data prediction is performed with a linear model having the highest fuzzy membership value between input attributes and cluster centers in leaf nodes. To show the effectiveness of the proposed method, we have applied our method to various dataset. Under various experiments, our proposed method shows better performance than conventional model tree and artificial neural networks.
본 논문에서는 퍼지 클러스터 기법을 이용하여 구간 분할된 퍼지 모델트리의 제안과 이를 이용한 데이터 모델링 기법을 다룬다. 제안된 방법은 먼저 입력과 출력변수의 속성을 고려한 퍼지 클러스터링에 의해 중심벡터를 계산한 후, 중심벡터들과 입력속성간의 소속도를 이용하여 구간 분할된 영역별로 각각의 선형모델을 구축한다. 노드의 확장은 부모노드(parent node)에서 만들어진 모델에서 계산된 오차값과 자식노드(child node)에서 계산된 오차값을 비교하여 이루어진다. 출력값 예측 단계에서는 입력된 데이터와 잎노드에서 계산된 클러스터 중심값과 비교하여 소속도가 높은 선형모델을 선택하여 데이터에 대한 출력값을 예측하게 된다. 제안된 방법의 우수성을 보이기 위해 다양한 데이터를 대상으로 실험한 결과, 기존의 모델트리방식 및 뉴럴 네트워크 기반의 신경회로망 보다 향상된 성능을 보임을 알 수 있었다.