• Title/Summary/Keyword: 영역센서

Search Result 1,429, Processing Time 0.025 seconds

An Analysis of MODIS Aerosol Optical Properties and Ground-based Mass Concentrations in Central Korea in 2009 (2009년 한국 중부 지역에서 MODIS 에어로졸 광학 성질과 질량 농도의 분석)

  • Kim, Hak-Sung;Kim, Ji-Min;Sohn, Jung-Joo
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.269-279
    • /
    • 2012
  • Satellite-retrieved data on Aerosol Optical Depth (AOD) and ${\AA}$ngstr$\ddot{o}$m exponent (AE) using a Moderate Resolution Imaging Spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March ($0.44{\pm}0.25$) and low in September ($0.24{\pm}0.21$) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in Northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. Although $PM_{10}$ with diameters ${\leq}10{\mu}m$ was the highest in February at Anmyon, Cheongwon and Ulleung, which is located leeward about half-way through the Korean Peninsula, AOD rose to a high in May. The growth of hygroscopic aerosols moving with increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically reaches its highest value ($1.30{\pm}0.37$) in August due to anthropogenic aerosols originating from industrial areas in Eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of $PM_{10}$ at Anmyon, Cheongwon and Ulleung were 0.4-0.6. Four cases (six days) of mineral dustfall from sandstorms and six cases (twelve days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. $PM_{10}$ mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing $PM_{10}$ mass concentrations, exhibited higher AOD values in the Yellow Sea region.

A study for detection of melt flow zone about polyethylene butt fusion joints (폴리에틸렌 배관 버트융착부 열용융거리 측정에 대한 연구)

  • Kil, Seonghee;Kim, Younggu;Jo, NYoungdo;Lee, Yeonjae
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2016
  • Polyethylene pipes has useful benefits which are anti-corrosive and flexible material, so it is used to gas pipes but also class 3 water pipes of nuclear power plant, process pipes of petrochemical plant and chemical plant. So the usage of polyethylene pipes is widely increased. But it has been limited for the usage of polyethylene, because it can not be directly detected to fusion joints by using non destructive evaluation. Polyethylene pipes are connected by two methods, one is butt fusion and the other is electrofusion. Butt fusion is widely used to connecting the pipes. It is proposed to method for determining the reliability of joints in this study that is detection of the melt flow zone at fusion joints. In this study, middle density polyethylene is used, outside diameter of the test specimen is 225mm and thickness is 20.5mm. Speed of ultrasonic of this test specimen is 2,200m/s. Test specimens were fabricated by varying the heating time which means from 0% to 130% applying time through heating plate to polyethylene for detecting melt flow zone. Also 4 additional test specimens were made, one was made that not scrapping attached surface of pipes but applying 100% of the proper heating time and the others were made to include of soil, gravel and vinly tape paper at fusion joints, that were also applied 100% of proper heating time. Ultrasonic testing to measure the melt flow zone of 20 test specimens was conducted by using 3.5MHz and 5.0MHz ultrasonic probes and melt flow zone measuring was conducted to three times at different point to one specimen. To differentiate the melt flow zone signal, post image processing was equally conducted to all test results and image levels, contrast, sharpen, threshold were adopted to all teat results and the test results were displayed gray scale. From the results, for the shorter heating times the reflection area of multiple echo have been increased, so the data was obtained from the position where it can be eliminated as much as possible. At 80% of proper heating time(168 sec.), the signal of melt flow zone was obtained clearly, so measuring could be conducted. From 7% of proper heating time(15 sec.) to shorter heating times. we could not obtain the signal because test specimen was not fused. From the result, we can verify that measuring of melt flow zone by using phased array ultrasonic imaging method is possible. And we can verify to complete and incomplete butt fusion by measuring the melt flow zone.

A Study on Intuitive IoT Interface System using 3D Depth Camera (3D 깊이 카메라를 활용한 직관적인 사물인터넷 인터페이스 시스템에 관한 연구)

  • Park, Jongsub;Hong, June Seok;Kim, Wooju
    • The Journal of Society for e-Business Studies
    • /
    • v.22 no.2
    • /
    • pp.137-152
    • /
    • 2017
  • The decline in the price of IT devices and the development of the Internet have created a new field called Internet of Things (IoT). IoT, which creates new services by connecting all the objects that are in everyday life to the Internet, is pioneering new forms of business that have not been seen before in combination with Big Data. The prospect of IoT can be said to be unlimited in its utilization. In addition, studies of standardization organizations for smooth connection of these IoT devices are also active. However, there is a part of this study that we overlook. In order to control IoT equipment or acquire information, it is necessary to separately develop interworking issues (IP address, Wi-Fi, Bluetooth, NFC, etc.) and related application software or apps. In order to solve these problems, existing research methods have been conducted on augmented reality using GPS or markers. However, there is a disadvantage in that a separate marker is required and the marker is recognized only in the vicinity. In addition, in the case of a study using a GPS address using a 2D-based camera, it was difficult to implement an active interface because the distance to the target device could not be recognized. In this study, we use 3D Depth recognition camera to be installed on smartphone and calculate the space coordinates automatically by linking the distance measurement and the sensor information of the mobile phone without a separate marker. Coordination inquiry finds equipment of IoT and enables information acquisition and control of corresponding IoT equipment. Therefore, from the user's point of view, it is possible to reduce the burden on the problem of interworking of the IoT equipment and the installation of the app. Furthermore, if this technology is used in the field of public services and smart glasses, it will reduce duplication of investment in software development and increase in public services.

Characteristics of the Electro-Optical Camera(EOC) (다목적실용위성탑재 전자광학카메라(EOC)의 성능 특성)

  • Seunghoon Lee;Hyung-Sik Shim;Hong-Yul Paik
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.213-222
    • /
    • 1998
  • Electro-Optical Camera(EOC) is the main payload of the KOrea Multi-Purpose SATellite(KOMPSAT) with the mission of cartography to build up a digital map of Korean territory including a Digital Terrain Elevation Map(DTEM). This instalment which comprises EOC Sensor Assembly and EOC Electronics Assembly produces the panchromatic images of 6.6 m GSD with a swath wider than 17 km by push-broom scanning and spacecraft body pointing in a visible range of wavelength, 510~730 nm. The high resolution panchromatic image is to be collected for 2 minutes during 98 minutes of orbit cycle covering about 800 km along ground track, over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data storage. The image of 8 bit digitization, which is collected by a full reflective type F8.3 triplet without obscuration, is to be transmitted to Ground Station at a rate less than 25 Mbps. EOC was elaborated to have the performance which meets or surpasses its requirements of design phase. The spectral response, the modulation transfer function, and the uniformity of all the 2592 pixel of CCD of EOC are illustrated as they were measured for the convenience of end-user. The spectral response was measured with respect to each gain setup of EOC and this is expected to give the capability of generating more accurate panchromatic image to the users of EOC data. The modulation transfer function of EOC was measured as greater than 16 % at Nyquist frequency over the entire field of view, which exceeds its requirement of larger than 10 %. The uniformity that shows the relative response of each pixel of CCD was measured at every pixel of the Focal Plane Array of EOC and is illustrated for the data processing.

A Proposal for Korean armed forces preparing toward Future war: Examine the U.S. 'Mosaic Warfare' Concept (미래전을 대비한 한국군 발전방향 제언: 미국의 모자이크전 수행개념 고찰을 통하여)

  • Chang, Jin O;Jung, Jae-young
    • Maritime Security
    • /
    • v.1 no.1
    • /
    • pp.215-240
    • /
    • 2020
  • In 2017, the U.S. DARPA coined 'mosaic warfare' as a new way of warfighting. According to the Timothy Grayson, director of DARPA's Strategic Technologies Office, mosaic warfare is a "system of system" approach to warfghting designed around compatible "tiles" of capabilities, rather than uniquely shaped "puzzle pieces" that must be fitted into a specific slot in a battle plan in order for it to work. Prior to cover mosaic warfare theory and recent development, it deals analyze its background and several premises for better understanding. The U.S. DoD officials might acknowledge the current its forces vulnerability to the China's A2/AD assets. Furthermore, the U.S. seeks to complete military superiority even in other nation's territorial domains including sea and air. Given its rapid combat restoration capability and less manpower casualty, the U.S. would be able to ready to endure war of attrition that requires massive resources. The core concept of mosaic warfare is a "decision centric warfare". To embody this idea, it create adaptability for U.S. forces and complexity or uncertainty for the enemy through the rapid composition and recomposition of a more disag g reg ated U.S. military force using human command and machine control. This allows providing more options to friendly forces and collapse adversary's OODA loop eventually. Adaptable kill web, composable force packages, A.I., and context-centric C3 architecture are crucial elements to implement and carry out mosaic warfare. Recently, CSBA showed an compelling assessment of mosaic warfare simulation. In this wargame, there was a significant differences between traditional and mosaic teams. Mosaic team was able to mount more simultaneous actions, creating additional complexity to adversaries and overwhelming their decision-making with less friendly force's human casualty. It increase the speed of the U.S. force's decision-making, enabling commanders to better employ tempo. Consequently, this article finds out and suggests implications for Korea armed forces. First of all, it needs to examine and develop 'mosaic warfare' in terms of our security circumstance. In response to future warfare, reviewing overall force structure and architecture is required which is able to compose force element regardless domain. In regards to insufficient defense resources and budget, "choice" and "concentration" are also essential. It needs to have eyes on the neighboring countries' development of future war concept carefully.

  • PDF

Temperature change and performance of bur efficiency for two different drill combinations (두 가지 임플란트 드릴 조합에 따른 온도 변화 및 효율 비교)

  • Hwang-Bo, Heung;Park, Jae-Young;Lee, Sang-Youn;Son, Keunbada;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.60 no.2
    • /
    • pp.143-151
    • /
    • 2022
  • Purpose. The purpose of this study was to evaluate the performance efficiency of two different drill combinations according to the heat generated and drilling time. Materials and methods. In this study, cow ribs were used as research materials. To test the specimen, cow bones were rid of fascia and muscles, and a temperature sensor was mounted around the drilling area. The experimental group was divided into a group using a guide drill and a group using a Lindmann drill according to the drill used before the initial drilling. The drilling sequence of the guide drilling group is as follows; guide drill (ø 2.25), initial drill (ø 2.25), twist drill (ø 2.80), and twist drill (ø 3.20). The drilling sequence of the Lindmann drilling group is as follows; Lindmann drill (ø 2.10), initial drill (ø 2.25), twist drill (ø 2.80), and twist drill (ø 3.20). The temperature was measured after drilling. For statistical analysis, the difference between the groups was analyzed using the Mann-Whitney U test and the Friedman test was used (α = .05). Results. The average performance efficiency for each specimen of guide drilling group ranged from 0.3861 to 1.1385 mm3/s and that of Lindmann drilling group ranged from 0.1700 to 0.4199 mm3/s. The two drill combinations contained a guide drill and Lindmann drill as their first drills. The combination using the guide drill demonstrated excellent performance efficiency when calculated using the drilling time (P < .001). Conclusion. Since the guide drill group showed better performance efficiency than the Lindmann drill group, the use of the guide drill was more suitable for the primary drilling process.

Multi-resolution SAR Image-based Agricultural Reservoir Monitoring (농업용 저수지 모니터링을 위한 다해상도 SAR 영상의 활용)

  • Lee, Seulchan;Jeong, Jaehwan;Oh, Seungcheol;Jeong, Hagyu;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.497-510
    • /
    • 2022
  • Agricultural reservoirs are essential structures for water supplies during dry period in the Korean peninsula, where water resources are temporally unequally distributed. For efficient water management, systematic and effective monitoring of medium-small reservoirs is required. Synthetic Aperture Radar (SAR) provides a way for continuous monitoring of those, with its capability of all-weather observation. This study aims to evaluate the applicability of SAR in monitoring medium-small reservoirs using Sentinel-1 (10 m resolution) and Capella X-SAR (1 m resolution), at Chari (CR), Galjeon (GJ), Dwitgol (DG) reservoirs located in Ulsan, Korea. Water detected results applying Z fuzzy function-based threshold (Z-thresh) and Chan-vese (CV), an object detection-based segmentation algorithm, are quantitatively evaluated using UAV-detected water boundary (UWB). Accuracy metrics from Z-thresh were 0.87, 0.89, 0.77 (at CR, GJ, DG, respectively) using Sentinel-1 and 0.78, 0.72, 0.81 using Capella, and improvements were observed when CV was applied (Sentinel-1: 0.94, 0.89, 0.84, Capella: 0.92, 0.89, 0.93). Boundaries of the waterbody detected from Capella agreed relatively well with UWB; however, false- and un-detections occurred from speckle noises, due to its high resolution. When masked with optical sensor-based supplementary images, improvements up to 13% were observed. More effective water resource management is expected to be possible with continuous monitoring of available water quantity, when more accurate and precise SAR-based water detection technique is developed.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.