• Title/Summary/Keyword: 영상 초점면

Search Result 63, Processing Time 0.022 seconds

Determination of Background Gray-level for Accurate Measurement of Particles in using Image Processing Method (영상처리 기법을 이용한 입경 측정시 배경 명도가 측정 정밀도에 미치는 영향)

  • Koh, Kwang-Uoong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.599-607
    • /
    • 2000
  • In this study, experiments have been performed to examine the effects of background gray-level on the depth-of-field and on the in-focus criteria. The normalized value of contrast(VC) and the gradient indicator(GI) were used as the in-focus criteria for the small and the large size-ranges of particles, respectively. The slightly larger number of pixels were detected with the brighter background. The maximum of the normalized value of contrast(VCmax) is decreased with the brighter background and its deviation from that with the background gray-level of 160 turned out to be about $pm$15% when the background gray-level changes from 100 to 200. However, the maximum gradient indicator(GImax) changes with the background gray-level within only $pm$5%. The depth-of-field for the VC-applicable particle-size range is largely dependent on the background gray-level. On the other hand, the depth-of-field for the GI-applicable particle-size range changes only slightly with the background gray-level. To keep the normalized standard deviation of the particle size within 0.1, the background gray-level should be set 160$pm$20 for both the VC-applicable and GI-applicable ranges which cover the particle size between $10{\mu}m$ and $300{\mu}m$.

Area storage density of ideal 3-D holographic disk memories (이상적인 디스크형 3차원 홀로그래픽 메모리에서의 면적 저장밀도)

  • 장주석;신동학
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.58-64
    • /
    • 2000
  • Assuming that the performance of holographic storage media is ideal, we estimate the area storage density of disk-type holographic memories, when the method of either angle multiplexing, or rotational multiplexing, or both are used. The area storage density is strongly dependent on the f numbers (ratio of focal length to diameter) of both the Fourier transform lens in the signal arm, denoted by $F/#_2$, and the angle range over which the reference beam is incident (or, the equivalent f number corresponding to the angle range denoted by $F/#_1$). The area storage density is largely independent of the pixel pitch of the spatial light modulator when the Fourier plane holograms are recorded, while it is sensitive to the pixel pitch when the image plane holograms are recorded. In general, to obtain high area storage density, the Fourier or at least near Fourier plane holograms rather than the image plane holograms should be recorded. In addition, when the thickness of the recording materials are less than approximately $500\mu\extrm{m}$, rotational multiplexing gives higher area storage densities than angle multiplexing does. To increase the storage density further, however, it is desirable to use both of the two multiplexing methods in combination.nation.

  • PDF

A Study on the Rotational Motion Compensation Method for ISAR Imaging (ISAR 영상 형성을 위한 회전운동보상 기법 연구)

  • Kang, Byung-Soo;Bae, Ji-Hoon;Chung, Sung-Eun;Kim, Chan-Hong;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • In this paper, we propose a inverse synthetic aperture radar(ISAR) rotational motion compensation(RMC) method to remove residual blurring caused by non-uniform rotational motion of a target. First, a range bin having an isolated scatterer is selected. Next, polynomial phase signal in the selected range bin is estimated by using both Fourier transform(FT) and polynomial-phase transform(PPT). Finally, a new slow time variable that uniformly samples radar signal along the aspect angle directions is defined by using the estimated phase signal, and we interpolate radar signal in terms of the new time variable. As a result, rotational motion to blurr ISAR images is removed, and focused ISAR images are obtained. Simulation results using battleship model validate the robustness and effectiveness of our proposed RMC method.

Distribution of X-ray Strength in Exposure Field Caused by Heel Effect (양극의 경사각 효과에 따른 조사야 X-선 강도 분포)

  • Jang, Keun-Jo;Kim, Nam-Hun;Lee, Jun-Haeng;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.223-229
    • /
    • 2011
  • When negative electron in x-ray tube is accelerated in to a high speed and then the currency of the electron is blocked by the target, x-ray happens by the conversion of the energy. The real area where the fast accelerated electron collides to a target area is called actual focal spot. When the string focused size is observed at the central ray side, where the direction x-ray comes out, the size seems to be reduced. This focus is called effective focal spot. According to radiation angle of x-rays tube, the degree of the negative pole side presents higher value than inclination, the amount of exposed radiation that patient receives differs by the angle of positive pole, which means effective focal spot is the variable. This paper presents the correlation between size of effective focal spot and amount of exposed radiation to the patient by it, and effective research for homogenized dose dispersion by the size of effective focal spot. In conclusion, following the focal size, effective range which was -8cm ~ 0 cm on average, was found and average dose rate was 0.019 R/min. Through this range, for patients with small radiation exposure, image with good density and resolution in aspect of diagnosing will be able to be obtained.

Super Multi-view Display Method using Pin-hole Array (핀홀어레이를 이용한 슈퍼 멀티-뷰 3D 디스플레이)

  • Byeon, Jin-A;Kwon, Ki-Chul;Erdenebat, Munkh-Uchral;Park, Jae-Hyeung;Kim, Sung-Kyu;Kim, Jong-Jae;Kim, Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • In this paper a Super Multi-view display method using a pinhole array with full parallax was proposed. The proposed method was simulated and its parameters analyzed. Also, the distribution and irradiance of light through each pinhole on the retina receiver, according to the change of crystalline lens focal length, were found by simulation. As a result, an image free of blurring was obtained while the crystalline lens focused on the depth plane of the three-dimensional image created by the imaging lens.

Inverse Synthetic Aperture Radar Imaging Using Stepped Chirp Waveform (계단 첩 파형(Stepped Chirp Waveform)을 이용한 ISAR 영상 형성)

  • Lee, Seong-Hyeon;Kang, Min-Suk;Park, Sang-Hong;Shin, Seung-Yong;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.930-937
    • /
    • 2014
  • Inverse synthetic aperture radar (ISAR) images can be generated by radar which radiates the electromagnetic wave to a target and receives signal reflected from the target. ISAR images can be widely used to target detection and recognition. This paper proposed a method of generation of high resolution ISAR images by synthesizing frequency spectrums of each stepped chirp waveform in one burst and sub-sampling in frequency domain. This process is performed over entire bursts during coherent processing interval. Conventional ISAR image generation method using stepped frequency waveform has a severe problem of short unambiguous range, loading to ghost phenomenon. However, this problem can be resolved by the proposed method. In simulations, we generate high resolution ISAR image of the moving target which is Boeing-737 aircraft model composed of several ideal point scatterers.

Usefulness of Three-Dimensional Maximal Intensity Projection (MIP) Reconstruction Image in Breast MRI (유방자기공명영상에서 3 차원 최대 강도 투사 재건 영상의 유용성)

  • Kim, Hyun-Sung;Kang, Bong-Joo;Kim, Sung-Hun;Choi, Jae-Jeong;Lee, Ji-Hye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.2
    • /
    • pp.183-189
    • /
    • 2009
  • Purpose : To evaluate the usefulness of three-dimensional (3D) maximal intensity projection (MIP) reconstruction method in breast MRI. Materials and Methods : Total 54 breasts of consecutive 27 patients were examined by breast MRI. Breast MRI was performed using GE Signa Excite Twin speed (GE medical system, Wisconsin, USA) 1.5T. We obtained routine breast MR images including axial T2WI, T1WI, sagittal T1FS, dynamic contrast-enhanced T1FS, and subtraction images. 3D MIP reconstruction images were obtained as follows; subtraction images were obtained using TIPS and early stage of contrast-enhanced TIPS images. And then 3D MIP images were obtained using the subtraction images through advantage workstation (GE Medical system). We detected and analyzed the lesions in the 3D MIP and routine MRI images according to ACR $BIRADS^{(R)}$ MRI lexicon. And then we compared the findings of 3D MIP and those of routine breast MR images and evaluated whether 3D MIP had additional information comparing to routine MR images. Results : 3D MIP images detect the 43 of 56 masses found on routine MR images (76.8%). In non-mass like enhancement, 3D MIP detected 17 of 20 lesions (85 %). And there were one hundred sixty nine foci at 3D MIP images and one hundred nine foci at routine MR images. 3D MIP images detected 14 of 23 category 3 lesions (60.9%), 11 of 16 category 4 lesions (68.87%), 28 of 28 Category 5 lesions (100%). In analyzing the enhancing lesions at 3D MIP images, assessment categories of the lesions were correlated as the results at routine MR images (p-value < 0.0001). 3D MIP detected additional two daughter nodules that were descriped foci at routine MR images and additional one nodule that was not detected at routine MR images. Conclusion : 3D MIP image has some limitations but is useful as additional image of routine breast MR Images.

  • PDF

Study on the Brightness Temperature Measurement in the Human Body Using Millimeter-wave Radiometer (밀리미터파 라디오미터를 이용한 인체의 내부 밝기온도 측정에 관한 연구)

  • Jung, Min Kyoo;Kim, Tae Hun;Nah, Seung Wook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.163-167
    • /
    • 2016
  • We have developed a millimeter-wave radiometer system for applications in the fields of medical imaging. In this paper, we introduced the brightness temperature measurement in the human body using Millimeter-wave Radiometer. Calibration of sensitivity of the radiometer system is essential to measure equivalent temperature (brightness temperature) of objects. We have developed, as a calibration source, a new type of black body for the millimeter wave region with temperature control capability. The system noise figure and temperature sensitivity of the system measured using the blackbody are 3.3 dB and 0.1 K, respectively. The brightness temperature of human body through clothes was measured to be around $38^{\circ}$[C].

A Lane Detection and Departure Warning System Robust to Illumination Change and Road Surface Symbols (도로조명변화 및 노면표시에 강인한 차선 검출 및 이탈 경고 시스템)

  • Kim, Kwang Soo;Choi, Seung Wan;Kwak, Soo Yeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.9-16
    • /
    • 2017
  • An Algorithm for Lane Detection and Lane Departure Warning for a Vehicle Driving on Roads is proposed in This Paper. Using Images Obtained from On-board Cameras for Lane Detection has Some Difficulties, e.g. the Increase of Fault Detection Ratio Due to Symbols on Roads, Missing Yellow Lanes in the Tunnel due to a Similar Color Lighting, Missing Some Lanes in Rainy Days Due to Low Intensity of Illumination, and so on. The Proposed Algorithm has been developed Focusing on Solving These Problems. It also has an Additional Function to Determine How much the Vehicle is leaning to any Side between The Lanes and, If Necessary, to Give a Warning to a Driver. Experiments Using an Image Database Built by Collecting with Vehicle On-board Blackbox in Six Different Situations have been conducted for Validation of the Proposed Algorithm. The Experimental Results show a High Performance of the Proposed Algorithm with Overall 97% Detection Success Ratio.

A Study on Rotational Motion Compensation Method for Bistatic ISAR Imaging (바이스태틱 ISAR 영상 형성을 위한 회전운동보상 기법 연구)

  • Kang, Byung-Soo;Ryu, Bo-Hyun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.670-677
    • /
    • 2017
  • In this paper, we propose a rotational motion compensation(RMC) for bistatic inverse synthetic aperture radar(Bi-ISAR) imaging. For this purpose, geometry-error, caused by changes of bistatic-angle, is removed using known position information of a transmitter, a receiver, and target trajectories. Next, RMC is performed to compensate non-uniform rotational motion error by reformatting radar signal in terms of a newly defined slow time variable that converts non-uniform rotational motion into uniform one. Simulation results using an aircraft model composed of ideal point scatterers validate the efficacy of the proposed Bi-ISAR RMC method.