• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.029 seconds

Camera Motion Estimation using Geometrically Symmetric Points in Subsequent Video Frames (인접 영상 프레임에서 기하학적 대칭점을 이용한 카메라 움직임 추정)

  • Jeon, Dae-Seong;Mun, Seong-Heon;Park, Jun-Ho;Yun, Yeong-U
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.2
    • /
    • pp.35-44
    • /
    • 2002
  • The translation and the rotation of camera occur global motion which affects all over the frame in video sequence. With the video sequences containing global motion, it is practically impossible to extract exact video objects and to calculate genuine object motions. Therefore, high compression ratio cannot be achieved due to the large motion vectors. This problem can be solved when the global motion compensated frames are used. The existing camera motion estimation methods for global motion compensation have a large amount of computations in common. In this paper, we propose a simple global motion estimation algorithm that consists of linear equations without any repetition. The algorithm uses information .of symmetric points in the frame of the video sequence. The discriminant conditions to distinguish regions belonging to distant view from foreground in the frame are presented. Only for the distant view satisfying the discriminant conditions, the linear equations for the panning, tilting, and zooming parameters are applied. From the experimental results using the MPEG test sequences, we can confirm that the proposed algorithm estimates correct global motion parameters. Moreover the real-time capability of the proposed technique can be applicable to many MPEG-4 and MPEG-7 related areas.

Improved Fuzzy Binarization Method with Trapezoid type Membership Function and Adaptive α_cut (사다리꼴 형태의 소속 함수와 동적 α_cut 을이용한 개선된 퍼지 이진화)

  • Woo, Hyun-su;Kim, Kwang-baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1852-1859
    • /
    • 2016
  • The effectiveness of a binarization algorithm in image processing depends on how to eliminate the uncertainty of determining threshold in a reasonable way and on minimizing information loss due to the binarization effect. Fuzzy binarization technique was proposed to handle that uncertainty with fuzzy logic. However, that method is known to be inefficient when the given image has low intensity contrast. In this paper, we propose an improved fuzzy binarization method to overcome such known drawbacks. Our method proposes a trapezoid type fuzzy membership function instead of most-frequently used triangle type one. We also propose an adaptive ${\alpha}$_cut determination policy. Our proposed method has less information loss than other algorithms since we do not use any stretching based preprocessing for enhancing the intensity contrast. In experiment, our proposed method is verified to be more effective in binarization with less information loss for many different types of images with low intensity contrast such as night scenery, lumber scoliosis, and lipoma images.

Parallel Processing of K-means Clustering Algorithm for Unsupervised Classification of Large Satellite Imagery (대용량 위성영상의 무감독 분류를 위한 K-means 군집화 알고리즘의 병렬처리)

  • Han, Soohee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.187-194
    • /
    • 2017
  • The present study introduces a method to parallelize k-means clustering algorithm for fast unsupervised classification of large satellite imagery. Known as a representative algorithm for unsupervised classification, k-means clustering is usually applied to a preprocessing step before supervised classification, but can show the evident advantages of parallel processing due to its high computational intensity and less human intervention. Parallel processing codes are developed by using multi-threading based on OpenMP. In experiments, a PC of 8 multi-core integrated CPU is involved. A 7 band and 30m resolution image from LANDSAT 8 OLI and a 8 band and 10m resolution image from Sentinel-2A are tested. Parallel processing has shown 6 time faster speed than sequential processing when using 10 classes. To check the consistency of parallel and sequential processing, centers, numbers of classified pixels of classes, classified images are mutually compared, resulting in the same results. The present study is meaningful because it has proved that performance of large satellite processing can be significantly improved by using parallel processing. And it is also revealed that it easy to implement parallel processing by using multi-threading based on OpenMP but it should be carefully designed to control the occurrence of false sharing.

Evaluation of Planting Distance in Rice Paddies Using Deep Learning-Based Drone Imagery (딥 러닝 기반 드론 영상을 활용한 벼 포장의 재식거리 평가)

  • Hyeok-jin Bak;Dongwon Kwon;Woo-jin Im;Ji-hyeon Lee;Eun-ji Kim;Nam-jin Chung;Jung-Il Cho;Woon-Ha Hwang;Jae-Ki Chnag;Wan-Gyu Sang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.69 no.3
    • /
    • pp.154-162
    • /
    • 2024
  • In response to the increasing impact of climate change on agriculture, various cultivation technologies have been recently developed to improve agricultural productivity and reduce carbon emissions for carbon neutrality. This study presents an algorithm for estimating rice planting density in agriculture using drone-captured images and deep learning-based image analysis technology. The algorithm utilizes images collected from various paddies; these images are processed through pre-processing steps and serve as training data for the YOLOv5x deep learning model. The trained model demonstrated high precision and recall, effectively estimating the position information of rice plants in each image. By accurately estimating the position of rice plants based on the central coordinates in diverse unpaved environments, the model allowed for estimation of rice plant density in each paddy, producing values closely aligned with actual measurements. Moreover, the algorithm proposed in this study provides a novel approach for precise determination of rice planting density based on the position information of rice plants in the images. Analysis of drone footage from different regions capturing portions of paddies revealed that the developed algorithm exhibited a significant correlation (R2 =0.877) with actual planting density. This finding suggests the potential effective application of the algorithm in real-world agricultural settings. In conclusion, we believe that this research contributes to the ongoing digital transformation in agriculture by offering a valuable technology that supports the goals of enhancing efficiency, mitigating methane emissions, and achieving carbon neutrality, in response to the challenges posed by climate change.

Indirect Volume Rendering of Hepatobiliary System from CT and MRI Images (CT와 MRI 영상을 이용한 간담도계 간접볼륨렌더링)

  • Jin, Gye-Hwan;Lee, Tae-Soo
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.2
    • /
    • pp.23-30
    • /
    • 2007
  • This paper presents a method of generating 3-dimensional images by preprocessing 2-dimensional abdominal images obtained using CT (computed tomography) and MRI (magnetic resonance imaging) through segmentation, threshold technique, etc. and apply the method to virtual endoscopy. Three-dimensional images were visualized using indirect volume rendering, which can render at high speed using a general-purpose graphic accelerator used in personal computers. The algorithm used in the rendering is Marching Cubes, which has only a small volume of calculation. In addition, we suggested a method of producing 3-dimensional images in VRML (virtual reality modeling language) running on the Web browser without a workstation or an exclusive program. The number of nodes, the number of triangles and the size of a 3-dimensional image file from CT were 85,367, 174,150 and 10,124, respectively, and those from MRI were 34,029, 67,824 and 3,804, respectively.

  • PDF

Detection of Number and Character Area of License Plate Using Deep Learning and Semantic Image Segmentation (딥러닝과 의미론적 영상분할을 이용한 자동차 번호판의 숫자 및 문자영역 검출)

  • Lee, Jeong-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.29-35
    • /
    • 2021
  • License plate recognition plays a key role in intelligent transportation systems. Therefore, it is a very important process to efficiently detect the number and character areas. In this paper, we propose a method to effectively detect license plate number area by applying deep learning and semantic image segmentation algorithm. The proposed method is an algorithm that detects number and text areas directly from the license plate without preprocessing such as pixel projection. The license plate image was acquired from a fixed camera installed on the road, and was used in various real situations taking into account both weather and lighting changes. The input images was normalized to reduce the color change, and the deep learning neural networks used in the experiment were Vgg16, Vgg19, ResNet18, and ResNet50. To examine the performance of the proposed method, we experimented with 500 license plate images. 300 sheets were used for learning and 200 sheets were used for testing. As a result of computer simulation, it was the best when using ResNet50, and 95.77% accuracy was obtained.

Systematic Approach to The Extraction of Effective Region for Tongue Diagnosis (설진 유효 영역 추출의 시스템적 접근 방법)

  • Kim, Keun-Ho;Do, Jun-Hyeong;Ryu, Hyun-Hee;Kim, Jong-Yeol
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.123-131
    • /
    • 2008
  • In Oriental medicine, the status of a tongue is the important indicator to diagnose the condition of one's health like the physiological and the clinicopathological changes of internal organs in a body. A tongue diagnosis is not only convenient but also non-invasive, and therefore widely used in Oriental medicine. However, the tongue diagnosis is affected by examination circumstances like a light source, patient's posture, and doctor's condition a lot. To develop an automatic tongue diagnosis system for an objective and standardized diagnosis, segmenting a tongue region from a facial image captured and classifying tongue coating are inevitable but difficult since the colors of a tongue, lips, and skin in a mouth are similar. The proposed method includes preprocessing, over-segmenting, detecting the edge with a local minimum over a shading area from the structure of a tongue, correcting local minima or detecting the edge with the greatest color difference, selecting one edge to correspond to a tongue shape, and smoothing edges, where preprocessing consists of down-sampling to reduce computation time, histogram equalization, and edge enhancement, which produces the region of a segmented tongue. Finally, the systematic procedure separated only a tongue region from a face image with a tongue, which was obtained from a digital tongue diagnosis system. Oriental medical doctors' evaluation for the results illustrated that the segmented region excluding a non-tongue region provides important information for the accurate diagnosis. The proposed method can be used for an objective and standardized diagnosis and for an u-Healthcare system.

A Study on Stroke Extraction for Handwritten Korean Character Recognition (필기체 한글 문자 인식을 위한 획 추출에 관한 연구)

  • Choi, Young-Kyoo;Rhee, Sang-Burm
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.375-382
    • /
    • 2002
  • Handwritten character recognition is classified into on-line handwritten character recognition and off-line handwritten character recognition. On-line handwritten character recognition has made a remarkable outcome compared to off-line hacdwritten character recognition. This method can acquire the dynamic written information such as the writing order and the position of a stroke by means of pen-based electronic input device such as a tablet board. On the contrary, Any dynamic information can not be acquired in off-line handwritten character recognition since there are extreme overlapping between consonants and vowels, and heavily noisy images between strokes, which change the recognition performance with the result of the preprocessing. This paper proposes a method that effectively extracts the stroke including dynamic information of characters for off-line Korean handwritten character recognition. First of all, this method makes improvement and binarization of input handwritten character image as preprocessing procedure using watershed algorithm. The next procedure is extraction of skeleton by using the transformed Lu and Wang's thinning: algorithm, and segment pixel array is extracted by abstracting the feature point of the characters. Then, the vectorization is executed with a maximum permission error method. In the case that a few strokes are bound in a segment, a segment pixel array is divided with two or more segment vectors. In order to reconstruct the extracted segment vector with a complete stroke, the directional component of the vector is mortified by using right-hand writing coordinate system. With combination of segment vectors which are adjacent and can be combined, the reconstruction of complete stroke is made out which is suitable for character recognition. As experimentation, it is verified that the proposed method is suitable for handwritten Korean character recognition.

Multi-modal Image Processing for Improving Recognition Accuracy of Text Data in Images (이미지 내의 텍스트 데이터 인식 정확도 향상을 위한 멀티 모달 이미지 처리 프로세스)

  • Park, Jungeun;Joo, Gyeongdon;Kim, Chulyun
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.148-158
    • /
    • 2018
  • The optical character recognition (OCR) is a technique to extract and recognize texts from images. It is an important preprocessing step in data analysis since most actual text information is embedded in images. Many OCR engines have high recognition accuracy for images where texts are clearly separable from background, such as white background and black lettering. However, they have low recognition accuracy for images where texts are not easily separable from complex background. To improve this low accuracy problem with complex images, it is necessary to transform the input image to make texts more noticeable. In this paper, we propose a method to segment an input image into text lines to enable OCR engines to recognize each line more efficiently, and to determine the final output by comparing the recognition rates of CLAHE module and Two-step module which distinguish texts from background regions based on image processing techniques. Through thorough experiments comparing with well-known OCR engines, Tesseract and Abbyy, we show that our proposed method have the best recognition accuracy with complex background images.

A Block Classification and Rotation Angle Extraction for Document Image (문서 영상의 영역 분류와 회전각 검출)

  • Mo, Moon-Jung;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.509-516
    • /
    • 2002
  • This paper proposes an efficient algorithm which recognizes the mixed document image consisting of the images, texts, tables, and straight lines. This system is composed of three steps. The first step is the detection of rotation angle for complementing skewed images, the second is detection of erasing an unnecessary background region and last is the classification of each component included in document images. This algorithm performs preprocessing of detecting rotation angles and correcting documents based on the detected rotation angles in order to minimize the error rate by skewness of the documentation. We detected the rotation angie using only horizontal and vertical components in document images and minimized calculation time by erasing unnecessary background region in the detecting process of component of document. In the next step, we classify various components such as image, text, table and line area included in document images. we applied this method to various document images in order to evaluate the performance of document recognition system and show the successful experimental results.