나선형 CT 혈관촬영에서 획득한 영상의 분석를 통해서 폐색전증이 의심되는 부위를 자동으로 검출하는 방법으로, 연구 대상은 20명의 환자를 대상으로 분석하였으며 CT 검사 후 방사선과 의사가 정상소견을 받은 환자 5명과 폐색전증이 있는 판독소견을 가진 15명을 대상으로 비교 분석하였다. CT 검사하는 동안에 조영제를 투입하면, 폐색전증이 발생한 부위는 조영제 양과 분포가 불균등하여 명암값이 낮게 검출된다. 검출방법으로는 전처리 작업으로 폐영역만을 분할하고, 분할된 폐영역에서 혈관을 찾기 위해 모폴로지기법를 적용하여 세선화(thinning) 작업을 진행한다. 다음 공정으로는 경계선을 찾아 local watershed를 적용하여 혈관을 검출하고, 검출된 혈관내에서 원형모델을 적용하여 모폴로지(morphology)을 통해 국소 부위의 미세한 농도변화를 인지하여 색전이 발생한 영역을 자동검출하였다. 본 논문의 자동검출시스템에서는 색전증이 있는 경우에 true positive의 발생빈도는 case 당 4.5개가 검출되었다. 정상인의 경우에도 혈류의 흐름, 혈류의 분기점, 노이즈로 인한 false positive의 빈도는 case 당 2.6개가 발생하여 전체적으로 false positive는 5.2개가 검출되었다. 본 논문은 false positive의 비율이 높게 검출되었지만 폐영역 CT 검사의 컴퓨터지원진단시스템(computer aided diagnosis)의 향후 연구과제에 방향을 제시할 수 있을 것이라 사료된다.
In this paper, we propose recurrent CNN(Convolutional Neural Networks) for detecting seizures among patients using EEG signals. In the proposed method, data were mapped by image to preserve the spectral characteristics of the EEG signal and the position of the electrode. After the spectral preprocessing, we input it into CNN and extracted the spatial and temporal features without wavelet transform. Results from the Children's Hospital of Boston Massachusetts Institute of Technology (CHB-MIT) dataset showed a sensitivity of 90% and a false positive rate (FPR) of 0.85 per hour.
The purpose of this study is to identify the emotional language of math teachers in math class using text mining techniques. For this purpose, we collected the discourse data of the teachers in the class by using the excellent class video. The analysis of the extracted unstructured data proceeded to three stages: data collection, data preprocessing, and text mining analysis. According to text mining analysis, there was few emotional language in teacher's response in mathematics class. This result can infer the characteristics of mathematics class in the aspect of affective domain.
Journal of the Korea Society of Computer and Information
/
v.26
no.2
/
pp.19-25
/
2021
In this paper proposes a method of finding missing persons based on face-recognition technology and deep learning. In this paper, a real-time face-recognition technology was developed, which performs face verification and improves the accuracy of face identification through data fortification for face recognition and convolutional neural network(CNN)-based image learning after the pre-processing of images transmitted from a mobile device. In identifying a missing person's image using the system implemented in this paper, the model that learned both original and blur-processed data performed the best. Further, a model using the pre-learned Noisy Student outperformed the one not using the same, but it has had a limitation of producing high levels of deflection and dispersion.
카메라 센서의 한계로 인하여 촬영 장면에 따라 한 번의 촬영으로 모든 영역의 밝기가 적절하게 촬영되지 않는 경우가 존재한다. 이러한 센서의 한계는 하이 다이나믹 레인지 이미징 기술을 통해서 극복이 가능하다. 한 장면을 다양한 노출 설정으로 여러 번 촬영하는 브라케팅은 움직이는 피사체를 찍기에 적절하지 않으며 촬영 시간이 길다는 단점이 있다. 본 연구는 한 번의 촬영으로 서로 다른 노출의 이미지를 얻을 수 있는 소형 라이트필드 카메라를 제안한다. 라이트필드 카메라는 대표적으로 두 가지 형태가 있는데, 첫 번째는 여러 대의 카메라를 어레이로 배치한 라이트필드 카메라 시스템이며, 두 번째는 대물렌즈 뒤에 마이크로 렌즈 어레이를 배치한 카메라이다. 본 연구에서 제작된 초박형 라이트필드 카메라는 센서 위에 마이크로 렌즈어레이가 부착되어있는 형태의 카메라로 각 렌즈 조리개 크기를 다르게 설계하여 한 번의 촬영으로 다른 노출의 촬영 결과를 얻을 수 있게 설계되었다. 촬영된 단일 영상들을 전처리 하여 이미지 품질을 높인 이후, HDR 알고리즘을 통해 각 단일 이미지들보다 다이나믹 레인지가 넓은 이미지를 획득하도록 구현하였다. 또한 노출 시간을 기준으로 설계된 식을 수정하여 조리개값에 따라 다른 가중치를 둘 수 있도록 바꾸었고, 이를 통해 단 한 번의 촬영을 통한 HDR 이미징을 구현하였다.
KIM, SEUNGNAM;CHOI, MYUNGJIN;KIM, SUN-JEONG;KIM, CHANG-HUN
Journal of the Korea Computer Graphics Society
/
v.28
no.4
/
pp.23-30
/
2022
In this paper, we propose an algorithm that can accurately segment a fire even when it is surrounded by smoke of a similar color. Existing fire area segmentation algorithms have a problem in that they cannot separate fire and smoke from fire images. In this paper, the fire was successfully separated from the smoke by applying the color compensation method and the fog removal method as a preprocessing process before applying the fire area segmentation algorithm. In fact, it was confirmed that it segments fire more effectively than the existing methods in the image of the fire scene covered with smoke. In addition, we propose a method that can use the proposed fire segmentation algorithm for efficient fire detection in factories and homes.
Park, Changjoon;Kim, Changki;Son, Seongkyu;Lee, Kyoungjin;Yoo, Heekyung;Gwak, Jeonghwan
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.77-82
/
2022
GUI(Graphical User Interface)를 대신하는 차세대 인터페이스로서 NUI(Natural User Interace)에 기대가 모이는 것은 자연스러운 흐름이다. 본 연구는 NUI의 손가락 관절을 포함한 손동작 전체를 인식시키기 위해 웹캠과 카메라를 활용하여 다양한 배경과 각도의 손동작 데이터를 수집한다. 수집된 데이터는 전처리를 거쳐 데이터셋을 구축하며, ResNet50 모델을 활용하여 전이학습한 합성곱 신경망(Convolutional Neural Network) 알고리즘 분류기를 설계한다. 구축한 데이터셋을 입력시켜 분류학습 및 예측을 진행하며, 실시간 영상에서 인식되는 손동작을 설계한 모델에 입력시켜 나온 결과를 통해 가위바위보 게임을 구현한다.
Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.
An, Sung-Jin;Lee, Kwan-Hee;Kwon, Goo-Rak;Kim, Nam-Hyung;Ko, Sung-Jea
Journal of the Institute of Electronics Engineers of Korea SP
/
v.44
no.2
s.314
/
pp.116-125
/
2007
In this paper, we propose a illumination environment adaptive real-time surveillance system for security of important area such as military bases, prisons, and strategic infra structures. The proposed system recognizes movement of objects on the bright environments as well as in dark illumination. The procedure of proposed system may be summarized as follows. First, the system discriminates between bright and dark with input image distribution. Then, if the input image is dark, the system has a pre-processing. The Multi-scale Retinex Color Restoration(MSRCR) is processed to enhance the contrast of image captured in dark environments. Secondly, the enhanced input image is subtracted with the revised background image. And then, we take a morphology image processing to obtain objects correctly. Finally, each bounding box enclosing each objects are tracked. The center point of each bounding box obtained by the proposed algorithm provides more accurate tracking information. Experimental results show that the proposed system provides good performance even though an object moves very fast and the background is quite dark.
Journal of Korea Society of Industrial Information Systems
/
v.11
no.4
/
pp.82-92
/
2006
In the field of image recognition, research on face recognition has recently attracted a lot of attention. The most important step in face recognition is automatic eye detection researched as a prerequisite stage. Existing eye detection methods for focusing on the frontal face can be mainly classified into two categories: active infrared(IR)-based approaches and image-based approaches. This paper proposes an eye region detection method in non-frontal faces. The proposed method is based on the edge--based method that shows the fastest computation time. To extract eye region in non-frontal faces, the method uses edge orientationhistogram of the global region of faces. The problem caused by some noise and unfavorable ambient light is solved by using proportion of width and height for local information and relationship between components for global information in approximately extracted region. In experimental results, the proposed method improved precision rates, as solving 3 problems caused by edge information and achieves a detection accuracy of 83.5% and a computational time of 0.5sec per face image using 300 face images provided by The Weizmann Institute of Science.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.