• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.034 seconds

Automatic Detection of Pulmonary Embolism in Spiral CT Angiography (나선형 CT 혈관촬영의 폐색전증 자동 검출)

  • Han, Jae-Bok;Hong, Sung-Hoon;Kim, Soo-Hyung;Lee, Guee-Sang
    • Annual Conference of KIPS
    • /
    • 2004.05a
    • /
    • pp.703-706
    • /
    • 2004
  • 나선형 CT 혈관촬영에서 획득한 영상의 분석를 통해서 폐색전증이 의심되는 부위를 자동으로 검출하는 방법으로, 연구 대상은 20명의 환자를 대상으로 분석하였으며 CT 검사 후 방사선과 의사가 정상소견을 받은 환자 5명과 폐색전증이 있는 판독소견을 가진 15명을 대상으로 비교 분석하였다. CT 검사하는 동안에 조영제를 투입하면, 폐색전증이 발생한 부위는 조영제 양과 분포가 불균등하여 명암값이 낮게 검출된다. 검출방법으로는 전처리 작업으로 폐영역만을 분할하고, 분할된 폐영역에서 혈관을 찾기 위해 모폴로지기법를 적용하여 세선화(thinning) 작업을 진행한다. 다음 공정으로는 경계선을 찾아 local watershed를 적용하여 혈관을 검출하고, 검출된 혈관내에서 원형모델을 적용하여 모폴로지(morphology)을 통해 국소 부위의 미세한 농도변화를 인지하여 색전이 발생한 영역을 자동검출하였다. 본 논문의 자동검출시스템에서는 색전증이 있는 경우에 true positive의 발생빈도는 case 당 4.5개가 검출되었다. 정상인의 경우에도 혈류의 흐름, 혈류의 분기점, 노이즈로 인한 false positive의 빈도는 case 당 2.6개가 발생하여 전체적으로 false positive는 5.2개가 검출되었다. 본 논문은 false positive의 비율이 높게 검출되었지만 폐영역 CT 검사의 컴퓨터지원진단시스템(computer aided diagnosis)의 향후 연구과제에 방향을 제시할 수 있을 것이라 사료된다.

  • PDF

Epileptic Seizure Detection for Multi-channel EEG with Recurrent Convolutional Neural Networks (순환 합성곱 신경망를 이용한 다채널 뇌파 분석의 간질 발작 탐지)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1175-1179
    • /
    • 2018
  • In this paper, we propose recurrent CNN(Convolutional Neural Networks) for detecting seizures among patients using EEG signals. In the proposed method, data were mapped by image to preserve the spectral characteristics of the EEG signal and the position of the electrode. After the spectral preprocessing, we input it into CNN and extracted the spatial and temporal features without wavelet transform. Results from the Children's Hospital of Boston Massachusetts Institute of Technology (CHB-MIT) dataset showed a sensitivity of 90% and a false positive rate (FPR) of 0.85 per hour.

The Frequency Analysis of Teacher's Emotional Response in Mathematics Class (수학 담화에서 나타나는 교사의 감성적 언어 빈도 분석)

  • Son, Bok Eun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.32 no.4
    • /
    • pp.555-573
    • /
    • 2018
  • The purpose of this study is to identify the emotional language of math teachers in math class using text mining techniques. For this purpose, we collected the discourse data of the teachers in the class by using the excellent class video. The analysis of the extracted unstructured data proceeded to three stages: data collection, data preprocessing, and text mining analysis. According to text mining analysis, there was few emotional language in teacher's response in mathematics class. This result can infer the characteristics of mathematics class in the aspect of affective domain.

A Design and Implementation of Missing Person Identification System using face Recognition

  • Shin, Jong-Hwan;Park, Chan-Mi;Lee, Heon-Ju;Lee, Seoung-Hyeon;Lee, Jae-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • In this paper proposes a method of finding missing persons based on face-recognition technology and deep learning. In this paper, a real-time face-recognition technology was developed, which performs face verification and improves the accuracy of face identification through data fortification for face recognition and convolutional neural network(CNN)-based image learning after the pre-processing of images transmitted from a mobile device. In identifying a missing person's image using the system implemented in this paper, the model that learned both original and blur-processed data performed the best. Further, a model using the pre-learned Noisy Student outperformed the one not using the same, but it has had a limitation of producing high levels of deflection and dispersion.

Developing an HDR Imaging Method for an Ultra-thin Light-Field Camera (초박형 라이트필드 카메라를 위한 HDR 이미징 알고리즘 개발)

  • Jiwoong Na;Jaekwan Ryu;Yongjin Jo;Min H. Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.13-19
    • /
    • 2023
  • 카메라 센서의 한계로 인하여 촬영 장면에 따라 한 번의 촬영으로 모든 영역의 밝기가 적절하게 촬영되지 않는 경우가 존재한다. 이러한 센서의 한계는 하이 다이나믹 레인지 이미징 기술을 통해서 극복이 가능하다. 한 장면을 다양한 노출 설정으로 여러 번 촬영하는 브라케팅은 움직이는 피사체를 찍기에 적절하지 않으며 촬영 시간이 길다는 단점이 있다. 본 연구는 한 번의 촬영으로 서로 다른 노출의 이미지를 얻을 수 있는 소형 라이트필드 카메라를 제안한다. 라이트필드 카메라는 대표적으로 두 가지 형태가 있는데, 첫 번째는 여러 대의 카메라를 어레이로 배치한 라이트필드 카메라 시스템이며, 두 번째는 대물렌즈 뒤에 마이크로 렌즈 어레이를 배치한 카메라이다. 본 연구에서 제작된 초박형 라이트필드 카메라는 센서 위에 마이크로 렌즈어레이가 부착되어있는 형태의 카메라로 각 렌즈 조리개 크기를 다르게 설계하여 한 번의 촬영으로 다른 노출의 촬영 결과를 얻을 수 있게 설계되었다. 촬영된 단일 영상들을 전처리 하여 이미지 품질을 높인 이후, HDR 알고리즘을 통해 각 단일 이미지들보다 다이나믹 레인지가 넓은 이미지를 획득하도록 구현하였다. 또한 노출 시간을 기준으로 설계된 식을 수정하여 조리개값에 따라 다른 가중치를 둘 수 있도록 바꾸었고, 이를 통해 단 한 번의 촬영을 통한 HDR 이미징을 구현하였다.

Image-based fire area segmentation method by removing the smoke area from the fire scene videos (화재 현장 영상에서 연기 영역을 제외한 이미지 기반 불의 영역 검출 기법)

  • KIM, SEUNGNAM;CHOI, MYUNGJIN;KIM, SUN-JEONG;KIM, CHANG-HUN
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.4
    • /
    • pp.23-30
    • /
    • 2022
  • In this paper, we propose an algorithm that can accurately segment a fire even when it is surrounded by smoke of a similar color. Existing fire area segmentation algorithms have a problem in that they cannot separate fire and smoke from fire images. In this paper, the fire was successfully separated from the smoke by applying the color compensation method and the fog removal method as a preprocessing process before applying the fire area segmentation algorithm. In fact, it was confirmed that it segments fire more effectively than the existing methods in the image of the fire scene covered with smoke. In addition, we propose a method that can use the proposed fire segmentation algorithm for efficient fire detection in factories and homes.

Implementation of hand motion recognition-based rock-paper-scissors game using ResNet50 transfer learning (ResNet50 전이학습을 활용한 손동작 인식 기반 가위바위보 게임 구현)

  • Park, Changjoon;Kim, Changki;Son, Seongkyu;Lee, Kyoungjin;Yoo, Heekyung;Gwak, Jeonghwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.77-82
    • /
    • 2022
  • GUI(Graphical User Interface)를 대신하는 차세대 인터페이스로서 NUI(Natural User Interace)에 기대가 모이는 것은 자연스러운 흐름이다. 본 연구는 NUI의 손가락 관절을 포함한 손동작 전체를 인식시키기 위해 웹캠과 카메라를 활용하여 다양한 배경과 각도의 손동작 데이터를 수집한다. 수집된 데이터는 전처리를 거쳐 데이터셋을 구축하며, ResNet50 모델을 활용하여 전이학습한 합성곱 신경망(Convolutional Neural Network) 알고리즘 분류기를 설계한다. 구축한 데이터셋을 입력시켜 분류학습 및 예측을 진행하며, 실시간 영상에서 인식되는 손동작을 설계한 모델에 입력시켜 나온 결과를 통해 가위바위보 게임을 구현한다.

  • PDF

Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose (OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교)

  • Nam Rye Son;Min A Jung
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.

Illumination Environment Adaptive Real-time Video Surveillance System for Security of Important Area (중요지역 보안을 위한 조명환경 적응형 실시간 영상 감시 시스템)

  • An, Sung-Jin;Lee, Kwan-Hee;Kwon, Goo-Rak;Kim, Nam-Hyung;Ko, Sung-Jea
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.116-125
    • /
    • 2007
  • In this paper, we propose a illumination environment adaptive real-time surveillance system for security of important area such as military bases, prisons, and strategic infra structures. The proposed system recognizes movement of objects on the bright environments as well as in dark illumination. The procedure of proposed system may be summarized as follows. First, the system discriminates between bright and dark with input image distribution. Then, if the input image is dark, the system has a pre-processing. The Multi-scale Retinex Color Restoration(MSRCR) is processed to enhance the contrast of image captured in dark environments. Secondly, the enhanced input image is subtracted with the revised background image. And then, we take a morphology image processing to obtain objects correctly. Finally, each bounding box enclosing each objects are tracked. The center point of each bounding box obtained by the proposed algorithm provides more accurate tracking information. Experimental results show that the proposed system provides good performance even though an object moves very fast and the background is quite dark.

Eye Region Detection Method in Rotated Face using Global Orientation Information (전역적인 에지 오리엔테이션 정보를 이용한 기울어진 얼굴 영상에서의 눈 영역 추출)

  • Jang, Chang-Hyuk;Park, An-Jin;Kurata Takeshi;Jain Anil K.;Park, Se-Hyun;Kim, Eun-Yi;Yang, Jong-Yeol;Jung, Kee-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.4
    • /
    • pp.82-92
    • /
    • 2006
  • In the field of image recognition, research on face recognition has recently attracted a lot of attention. The most important step in face recognition is automatic eye detection researched as a prerequisite stage. Existing eye detection methods for focusing on the frontal face can be mainly classified into two categories: active infrared(IR)-based approaches and image-based approaches. This paper proposes an eye region detection method in non-frontal faces. The proposed method is based on the edge--based method that shows the fastest computation time. To extract eye region in non-frontal faces, the method uses edge orientationhistogram of the global region of faces. The problem caused by some noise and unfavorable ambient light is solved by using proportion of width and height for local information and relationship between components for global information in approximately extracted region. In experimental results, the proposed method improved precision rates, as solving 3 problems caused by edge information and achieves a detection accuracy of 83.5% and a computational time of 0.5sec per face image using 300 face images provided by The Weizmann Institute of Science.

  • PDF