• Title/Summary/Keyword: 영상 전처리

Search Result 1,103, Processing Time 0.032 seconds

Aesthetic Feature-based Activity Summarization for Senior Life Logging (시니어 라이프 로깅을 위한 심미적 특징 기반의 행동 요약 시스템)

  • Kim, Seondae;Ryu, Il-Woong;Ryu, Jaesung;Mujtaba, Ghulam;Park, Eunsoo;Kim, Seunghwan;Ryu, Eun-Seok
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.25-28
    • /
    • 2019
  • 본 논문은 시니어 라이프 로깅을 위한 데이터베이스를 효과적으로 구축하기 위해 영상의 심미적 특징을 통한 행동 별 영상 요약을 소개한다. 실내의 TV 앞에서 오랜 시간을 보내는 시니어의 상태를 체크하기 위해 일반 카메라 또는 360 카메라를 통해 HD 급 화질 이상의 영상을 주기적으로 수집하고, 이를 머신러닝 또는 딥러닝 기반의 행동인식 시스템에 이용하기 위한 전처리 단계에 응용할 수 있는 방법을 서술한다. 이 연구에서는 영상 데이터에서 얻을 수 있는 색상을 이용한 HSV 히스토그램, 영상신호의 Jitter 를 줄이는 고정도, 움직임 에너지 등을 이용하여 짧은 시간 내에 행동별로 구분된 영상(샷, shot)을 자르고 요약하는 방법을 서술한다.

  • PDF

A Design of Behavior Recognition method through GAN-based skeleton data generation (GAN 기반 관절 데이터 생성을 통한 행동 인식 방법 설계)

  • Kim, Jinah;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.592-593
    • /
    • 2022
  • 다중 데이터 기반의 행동 인식 과정에서 데이터 수집 반경이 비교적 제한되는 영상 데이터의 결측에 대한 보완이 요구된다. 본 논문에서는 6축 센서 데이터를 이용하여 결측된 영상 데이터를 생성함으로써 행동 인식의 성능을 개선하는 방법을 제안한다. 가속도와 자이로 센서로부터 수집된 행동 데이터를 이용하여 GAN(Generative Adversarial Network)을 통해 영상에서의 관절(Skeleton) 움직임에 대한 데이터를 생성하고자 한다. 이를 위해 DeepLabCut 기반 모델 학습을 통해 관절 좌표를 추출하며, 전처리된 센서 시퀀스 데이터를 가지고 GRU 기반 GAN 모델을 통해 관절 좌표에 대한 영상 시퀀스 데이터를 생성한다. 생성된 영상 시퀀스 데이터는 영상 데이터의 결측이 발생했을 때 대신 행동 인식 모델의 입력값으로 활용될 수 있어 성능 향상을 기대할 수 있다.

In double side printed Braille characters, front side′s character recognition after remove back side′s. (양면 인쇄된 점자에서 후면 제거 및 전면 점자 인식)

  • 최미영;홍경호
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.06a
    • /
    • pp.284-287
    • /
    • 2003
  • 본 논문은 시각 장애인을 위해 양면 인쇄된 점자를 스캐너를 통해서 읽어 들인 후, 영상 내의 잡음과 같은 미세 정보를 제거하는 전처리과정을 거친다 스캔한 영상을 임계값을 이용한 클리핑으로 이진영상을 만든 후 영상의 특징을 추출한다. 추출된 특징은 점자의 앞면과 뒷면으로 분류할 수 있다. 점자 앞면의 특징이 아래반원으로 나타나며 이러한 특징을 이용한 검출필터를 만들어 점자의 앞면만을 추출해낸다. 영상을 각각 수직방향, 수평방향으로 투영시켜 점자영상 분할을 위한 거리를 계산, 자간격과 줄간격을 구해 ½되는 지점에 선을 그어 분할한다. 분할된 점자 형태소를 낱자로 인식한다.

  • PDF

Images Grouping Technology based on Camera Sensors for Efficient Stitching of Multiple Images (다수의 영상간 효율적인 스티칭을 위한 카메라 센서 정보 기반 영상 그룹핑 기술)

  • Im, Jiheon;Lee, Euisang;Kim, Hoejung;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • Since the panoramic image can overcome the limitation of the viewing angle of the camera and have a wide field of view, it has been studied effectively in the fields of computer vision and stereo camera. In order to generate a panoramic image, stitching images taken by a plurality of general cameras instead of using a wide-angle camera, which is distorted, is widely used because it can reduce image distortion. The image stitching technique creates descriptors of feature points extracted from multiple images, compares the similarities of feature points, and links them together into one image. Each feature point has several hundreds of dimensions of information, and data processing time increases as more images are stitched. In particular, when a panorama is generated on the basis of an image photographed by a plurality of unspecified cameras with respect to an object, the extraction processing time of the overlapping feature points for similar images becomes longer. In this paper, we propose a preprocessing process to efficiently process stitching based on an image obtained from a number of unspecified cameras for one object or environment. In this way, the data processing time can be reduced by pre-grouping images based on camera sensor information and reducing the number of images to be stitched at one time. Later, stitching is done hierarchically to create one large panorama. Through the grouping preprocessing proposed in this paper, we confirmed that the stitching time for a large number of images is greatly reduced by experimental results.

Introduction to Image Pro-processing Subsystem of Geostationary Ocean Color Imager (GOCI) (정지궤도 해색탑재체(GOCI) 전처리시스템)

  • Seo, Seok-Bae;Lim, Hyun-Su;Ahn, Sang-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.167-173
    • /
    • 2010
  • This paper introduces Geostationary Ocean Color Imager, IMage Pre-processing Subsystem (GOCI IMPS) of Communication, Ocean, and Meteorological Satellite (COMS), and describes its functions, development states, and operational concepts. The primary and backup systems of GOCI IMPS have been installed in Korea Ocean Satellite Center (KOSC) and Satellite Operation Center (SOC) and the system are the prelaunch test phase after completing all required tests. It is expected that the GOCI data observed continuously over the Korea Peninsular in the geostationary orbit will be usefully utilized in marine environment research fields such as sea surface temperature changes or marine ecosystems.

Image Ehancement in the Pre-processing of a Character Recognition (문자인식의 전처리과정에서 영상향상)

  • Shin, Choong-Ho;Lee, Jong-Eun;Kim, Dan-Hwan;Kim, Hyeng-Gyun;Kim, Jae-Seog;Oh, Moo-Song
    • Annual Conference of KIPS
    • /
    • 2001.04a
    • /
    • pp.139-142
    • /
    • 2001
  • 컴퓨터 이미지처리는 여러 분야에서 응용되고 있는데 어떤 특성을 만족하는 객체들의 계수를 자동으로 분류시키는 생물학분야, 편지봉투나 일반양식에 인쇄되어 있는 글자를 자동으로 검출하고 인식하며 초음파검사 혹은 X-Ray 촬영에서 이미지를 획득하여 향상시키는 의료분야, 지문 및 얼굴인식 등에 이용되고 있다. 최근 몇 년 동안 이미지인식, 형태론, 이미지데이터 압축에 관한 연구가 진전되면서 본 연구에서 형태론적인 기법을 사용하여 문자인식을 위한 전처리 혹은 후처리 단계에서 사용되는 이미지향상을 위해서 침식, 골격화의 2단계를 적용하여 기종의 연구 방법과 비교하여 이미지획득 시간을 줄이고 이미지를 향상시켜 문자를 인식하는 알고리즘을 제안한다.

  • PDF

Recognition of Music using Backpropagation Network (Backpropagation을 이용한 악보인식)

  • Park, Hyun-Jun;Cha, Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1170-1175
    • /
    • 2007
  • This paper presents techniques to recognize music using back propagation network one of the neural network algorithms, and to preprocess technique for music mage. Music symbols and music notes are segmented by preprocessing such as binarization, slope correction, staff line removing, etc. Segmented music symbols and music notes are recognized by music note recognizing network and non-music note recognizing network. We proved correctness of proposed music recognition algorithm though experiments and analysis with various kind of musics.

Performance Comparison and Analysis of Moment Based- with Surface Based Multimodality Image Registration (다중모달리티 영상에 대한모멘트 기반 정합기법과 표면정보 기반 정합기법의 성능 비교 분석)

  • 박지영;김민정;최유주;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.286-288
    • /
    • 2003
  • 모멘트 기반 정합은 전처리 과정을 통하여 수행되는 정합 대상기관의 형태정보를 추출하여, 이를 기반으로 대상기관의 무게중심 및 주축을 계산하고 이들 모멘트 정보를 일치시킴으로써 서로 다른 3차원 영상에 대한 정합을 유도하는 기법이다. 표면정보 기반 영상정합은 대상기관에서 추출된 표면정보를 기반으로 변환을 추정하여 서로 다른 영상의 전형적 형태의 유사성 정도를 최대화함으로써 정합을 수행하는 방법이다. 본 연구에서는 서로 다른 모달리티 영상에 대한 정합을 위하여 모멘트 기반 정합기법과 표면정보기반정합기법을 각기 구현하고 이들 방법에 대한 성능 및 문제점을 비교 분석하였다.

  • PDF

Study on Hangul Character Region Detection in Natural Images (자연영상에서 한글문자 영역 검출에 관한 연구)

  • Bak, Jong-Cheon;Gwon, Gyo-Hyeon;Jeon, Byeong-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.430-433
    • /
    • 2010
  • 최근 모바일 기기로 획득된 영상을 이용한 다양한 분야의 연구가 활발히 진행되고 있으며, 스마트폰의 보급이 확대되면서 증강현실을 지원하고자 자연영상으로부터 문자정보를 추출 및 인식하여 이미지 검색을 가능하도록 하는 많은 연구도 진행되고 있다. 자연영상에서 한글문자 영역 검출은 한글문자 인식을 위한 전단계로서 다양한 환경에 노출된 문자영역을 정확히 검출하는 것이 인식 성능을 결정함으로 중요한 전처리 단계이다. 본 연구는 한글문자 영역의 에지 및 지역적 연결요소 성분 특징을 이용하여 한글문자 영역을 검출하는 방법을 제안한다. 에지 및 연결요소 성분의 특징을 검출하고, 그 결과를 레이블화하고 이를 분석함으로서 한글문자 후보 영역을 검출한다. 검출된 후보영역은 검증과정을 수행하여 최종적인 한글문자 영역을 추출한다. 제안한 방법은 다양한 환경에서 얻어진 자연영상을 대상으로 실험한 결과, 에지 및 연결요소 성분의 두 가지 특징을 결합함으로서 한글 문자영역 검출의 정확도를 향상하였다.

  • PDF

Text Extraction and Skew Detection in Natural Scenes (자연 영상에서의 텍스트 추출 및 기울기 추출)

  • 최규담;김성동;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.346-349
    • /
    • 2003
  • 본 논문은 실내외에서 얻어진 자연 영상으로부터 텍스트를 추출하는 방법과 추출되어진 텍스트가 기울어져 있을 경우 기울기 각도를 추정하고 보정하는 방법을 제안한다 이런 모든 과정은 4단계로 수행된다. 명도 이미지를 대상으로 첫째 자연 영상에서 에지 검출 처리를 위한 전처리 단계와 둘째 에지 검출과 세선화를 통한 잡음영상 및 선 제거, 텍스트 특징을 이용한 후보영역 검출단계로 이루어지고 셋째 그 텍스트 후보영역 안에서 이진화를 수행하고 불필요한 비텍스트 연결 요소를 추려내어 제거 함으로써 텍스트를 추출한다. 마지막은 후처리로써 추출된 텍스트의 기울기 각도를 추정하고 추정 된 각도만큼 회전함으로써 기울어진 텍스트를 보정한다 본 연구는 다양한 자연 영상을 대상으로 실험한 결과, 본 논문의 유용성과 정확한 텍스트추출을 확인하였다.

  • PDF