Acknowledgement
본 연구는 과학기술정보통신부와 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음(2019-0-01834)
DOI QR Code
다중 데이터 기반의 행동 인식 과정에서 데이터 수집 반경이 비교적 제한되는 영상 데이터의 결측에 대한 보완이 요구된다. 본 논문에서는 6축 센서 데이터를 이용하여 결측된 영상 데이터를 생성함으로써 행동 인식의 성능을 개선하는 방법을 제안한다. 가속도와 자이로 센서로부터 수집된 행동 데이터를 이용하여 GAN(Generative Adversarial Network)을 통해 영상에서의 관절(Skeleton) 움직임에 대한 데이터를 생성하고자 한다. 이를 위해 DeepLabCut 기반 모델 학습을 통해 관절 좌표를 추출하며, 전처리된 센서 시퀀스 데이터를 가지고 GRU 기반 GAN 모델을 통해 관절 좌표에 대한 영상 시퀀스 데이터를 생성한다. 생성된 영상 시퀀스 데이터는 영상 데이터의 결측이 발생했을 때 대신 행동 인식 모델의 입력값으로 활용될 수 있어 성능 향상을 기대할 수 있다.
본 연구는 과학기술정보통신부와 정보통신기획평가원의 SW중심대학사업의 연구결과로 수행되었음(2019-0-01834)