• Title/Summary/Keyword: 영상 왜곡 보정

Search Result 343, Processing Time 0.026 seconds

Calibration of Fisheye Lens Images Using a Spiral Pattern and Compensation for Geometric Distortion (나선형 패턴을 사용한 어안렌즈 영상 교정 및 기하학적 왜곡 보정)

  • Kim, Seon-Yung;Yoon, In-Hye;Kim, Dong-Gyun;Paik, Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.16-22
    • /
    • 2012
  • In this paper, we present spiral pattern which suits for optical simulator to calibrate fisheye lens and compensate geometric distortion. Using spiral pattern, we present calibration without mathematical modeling in advance. Proposed spiral pattern used to input image of optical simulator. Using fisheye lens image, we calibrate a fisheye lens by matching geometrically moved dots to corresponding original dots which leads not to need mathematical modeling. Proposed algorithm calibrates using dot matching which matches spiral pattern image dot to distorted image dot. And this algorithm does not need modeling in advance so it is effective. Proposed algorithm is enabled at processing of pattern recognition which has to get the exact information using fisheye lens for digital zooming. And this makes possible at compensation of geometric distortion and calibration of fisheye lens image applying in various image processing.

A Method for Thresholding and Correction of Skew in Camera Document Images (카메라 문서 영상의 이진화 및 기울어짐 보정 방법)

  • Jang Dae-Geun;Chun Byung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.3 s.35
    • /
    • pp.143-150
    • /
    • 2005
  • Camera image is very sensitive to illumination that result in difficulties for recognizing character. Also Camera captured document images have not only skew but also vignetting effect and geometric distortion. Vignetting effect make it difficult to separate characters from the document images. Geometric distortion, occurred by the mismatch of angle and center position between the document image and the camera, make the shape of characters to be distorted, so that the character recognition is more difficult than the case of using scanner. In this paper, we propose a method that can increase the performance of character recognition by correcting the geometric distortion of document images using a linear approximation which changes the quadrilateral region to the rectangle one. The proposed method also determine the quadrilateral transform region automatically, using the alignment of character lines and the skewed angles of characters located in the edges of each character line. Proposed method, therefore, can correct the geometric distortion without getting positional information from camera.

  • PDF

The Compensation of Image Distortion on the X - Ray Image Intensifier (X - Ray 검사 시스템에서 Image Intensifier의 왜곡 보정)

  • Shin, Dong-Chul;Oh, Choon-Suk
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.4
    • /
    • pp.1044-1047
    • /
    • 1998
  • Non-destructive x-ray inspection system needs image intensifier to obtain the x-ray image. Captured image from image intensifier is distorted because the input plate of image intensifier has a spherical surface. In the research, in order to compensate this image distortion, we created the model of image intensifier and show mathematically that the image distortion was compensated. To show the performance of the proposed method, experiment was performed in real x-ray inspection system.

  • PDF

A Study on Underwater-Pipe Video Image Mosaicking using Digital Photogrammetry (수치사진측량을 이용한 수중 파이프 비디오 모자익 영상 제작에 관한 연구)

  • Kang, Jin-A;Kwon, Kwang-Seok;Kim, Byung-Guk;Oh, Yoon-Seuk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.4
    • /
    • pp.150-160
    • /
    • 2008
  • The present domestic underwater and ocean facilities management depends on analysis with the naked eye. This study performs quantitative analysis to improve conventional methods, analyze spatial situation of underwater facilities. This research is divided into two steps; underwater image distortion correction and image mosaic step. First, underwater image distortion correction step is for the production of underwater target, calculates the correction parameters, and then developed the method that convert the original image point to whose distortion is corrected. Second step is for the obtaining pipe images installed in the underwater, corrects the distortion, and then transforms a coordinates of the correction pipe image. After coordinate transformation, we make the mosaic image using the singularities. As a result, when we measure the distance between pipe and underwater ground and compare with calculation value on mosaic image, it is showed that RMSE is 0.3cm.

  • PDF

Correction of Radiometric Distortion Caused by Geometric Property in SAR image using SAR Simulation (SAR영상의 모의제작에 의한 기하학적 복사왜곡의 보정)

  • Jeong, Soo;Yeu, Bock-Mo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • SAR data can be achieved independently of weather conditions or sun illumination which is main limitation of electro-optical sensor to get image. The information from imagery can be more enlarged using Shh data be-cause SAR data offers different information from electro-optical sensor. SAR data contains various distortions caused by the radar specification and geometric properties of data acquisition. These distortions should be removed to get the information with acceptable accuracy. In this study, we aimed to correct the radiometric distortion in Shh image caused by the geometric property of the object. For this purpose, we simulated the SAR image by modelling of the power of return beam which is variable according to the geometric configuration between SAR antenna and ground object. Dividing the SAR image by the simulation image, then, we can get the radiometrically corrected image. As a result of this study, we could minimize the effect of radiometric distortion in achieving some qualitative information from SAR image for the related field, such as Geospatial Information System.

  • PDF

Distortion Center Estimation using FOV Model and 2D Pattern (FOV 모델과 2D 패턴을 이용한 왜곡 중심 추정 기법)

  • Seo, Jeong-Goo;Kang, Euiseon
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.8
    • /
    • pp.11-19
    • /
    • 2013
  • This paper presents a simple method to estimate center of distortion and correct radial distortion from fish-eye lens. If the center of image is not locate that of lens in a straight line, the disadvantage of FOV model is low accurate because of correcting distortion without estimated centre of distortion. We propose a method accurately estimating Distortion center using FOV model and 2D pattern from wide angle lens. Our method determines the center of distortion in least error between straight lines and curves with FOV model. The results of experimental measurements on synthetic and real data are presented.

Design and Implementation of Automatic Detection Method of Corners of Grid Pattern from Distortion Corrected Image (왜곡보정 영상에서의 그리드 패턴 코너의 자동 검출 방법의 설계 및 구현)

  • Cheon, Sweung-Hwan;Jang, Jong-Wook;Jang, Si-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2645-2652
    • /
    • 2013
  • For a variety of vision systems such as car omni-directional surveillance systems and robot vision systems, many cameras have been equipped and used. In order to detect corners of grid pattern in AVM(Around View Monitoring) systems, after the non-linear radial distortion image obtained from wide-angle camera is corrected, corners of grids of the distortion corrected image must be detected. Though there are transformations such as Sub-Pixel and Hough transformation as corner detection methods for AVM systems, it is difficult to achieve automatic detection by Sub-Pixel and accuracy by Hough transformation. Therefore, we showed that the automatic detection proposed in this paper, which detects corners accurately from the distortion corrected image could be applied for AVM systems, by designing and implementing it, and evaluating its performance.

An Automatic Mapping Points Extraction Algorithm for Calibration of the Wide Angle Camera (광각 카메라 영상의 보정을 위한 자동 정합 좌표 추출 방법)

  • Kim, Byung-Ik;Kim, Dae-Hyeon;Bae, Tae-Wuk;Kim, Young-Choon;Shim, Tae-Eun;Kim, Duk-Gyoo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • This paper presents the auto-extraction method that searches for the Mapping points in the calibration algorithm of the image acquired by the wide angle CCD camera. In this algorithm, we remove the noise from the distorted image and then obtain the edge image. Proposed method extracts the distortion point, comparing the threshold value of the histogram of the horizontal and vertical pixel lines in edge image. This processing step can be directly applied to the original image of the wide angle CCD camera output. Proposed method results are compared with hand-worked result image using the two wide angle CCD cameras having different angles with the difference value of the result images respectively. Experimental results show that proposed method can allocate the distortion-calibration constant of the wide angle CCD camera regardless of lens type, distortion shape and image type.

Reconstruction of Transmitted Images from Images Displayed on Video Terminals (영상 단말에 전송된 이미지를 이용한 전송 영상 복원)

  • Park, Su-Kyung;Lee, Seon-Oh;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.49-57
    • /
    • 2012
  • An image reconstruction algorithm is proposed to estimate transmitted original images from images displayed on a video terminal. The proposed algorithm acquires images that are displayed on video terminal screens by using a camera. The transmitted images are then estimated with the acquired images. However, camera-acquired images exhibit geometric and color distortions caused by characteristics of the camera and display devices. We make use of a geometric distortion correction algorithm that exploits homography and color distortions using a weighted-linear model. The experimental results show that the proposed algorithm yields promising estimation performance with respect to the peak signal-to-noise ratio (PSNR). PSNR values of the estimated images with respect to the corresponding original images range from 28-29 dB.

Estimating the Pixel-correspondence to Correct Geomertical Lens Distortion (기하학적 렌즈 왜곡을 보정하기 위한 대응점 찾기)

  • 이학무;황경태;강문기
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.105-108
    • /
    • 1999
  • 렌즈를 통하여 촬영하는 모든 영상은 근본적으로 렌즈에 의한 기하학적인 왜곡이 발생하게 된다. 특히 방송영상에 있어서 더 넓은 영역을 촬영하기 위하여 어안렌즈를 사용하게 되면 왜곡은 더욱 심각해진다. 이러한 기하학적인 렌즈 왜곡은 반지름 r에 대한 다항식으로 모델링될 수 있고 여기서 각 항의 계수를 구함으로써 왜곡은 보정될 수 있다. 각항의 계수는 Block-Matching Algorithm(BMA)을 이용한 대응 화소 검출을 통해서 얻어 질 수 있는데 기존의 BMA는 사각형의 정해진 크기의 탐색 영역(search region)을 가지게 되므로 렌즈왜곡과 같은 특수한 상황에서는 비효율적이다. 따라서 본 논문에서는 렌즈 왜곡에 적응적인 탐색 영역(search region)을 갖는 새로운 BMA를 제안한다. 이는 렌즈 왜곡의 특성을 분석하여 렌즈 왜곡이 많이 일어나는 부분만을 특별히 정해서 대응 화소를 찾으므로 찾는 속도는 현저히 증가하고 성능은 기존의 BMA와 같은 성능을 보인다. 이러한 알고리즘은 하드웨어 구현에도 많은 도움이 될 것이다.

  • PDF