• Title/Summary/Keyword: 영상 기반 추적

Search Result 864, Processing Time 0.03 seconds

Fast ST-MRF based tracking using ROI-based GMC (관심영역 기반 전역 움직임 보상을 이용한 ST-MRF 기반 추적기 고속화 방법)

  • Park, Dong-Min;Lee, Dong-Kyu;Kim, Sang-Min;Oh, Seoung-Jun
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.11a
    • /
    • pp.142-145
    • /
    • 2014
  • 동영상에서의 객체 추적 알고리즘에 대한 활발한 연구가 진행되고 있음에도 불구하고 실시간 객체추적을 위해서는 여전히 정확도, 복잡도 등에서의 성능향상이 필요하다. 압축영역 기반 방식에서는 전역 움직임 보상(GMC : Global Motion Compensation)과정을 거쳐 추적하려는 객체와 배경을 구분한다. 전역 움직임 보상방법은 프레임 전 영역을 대상으로 하는 연산으로 전체 추적 시스템에서 차지하는 복잡도가 높다. 본 논문은 관심영역(ROI : Region Of Interest) 기반 전역 움직임 보상방법을 이용한 ST-MRF(Spatio-Temporal Markov Random Field)기반 추적기 고속화 방법을 제안한다. 관심영역을 기반으로 전역 움직임 보상을 적용함으로써 객체와 배경을 분리할 뿐만 아니라 알고리즘의 복잡도를 효과적으로 줄일 수 있다. 제안하는 방법의 추적성능은 평균 precision 87.29%, recall 82.58%, F-measure 83.78%로 기존방법과 비교하여 약 1%의 차이를 유지하였으며 전체 시스템의 수행시간은 평균 29.95ms로 기존방법과 비교하여 1.74배의 속도향상을 보였다.

  • PDF

Design of the Vision Based Head Tracker Using Area of Artificial Mark (인공표식의 면적을 이용하는 영상 기반 헤드 트랙커 설계)

  • 김종훈;이대우;조겸래
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.7
    • /
    • pp.63-70
    • /
    • 2006
  • This paper describes research of using area of artificial mark on vision based head tracker system. A head tracker system consists of the translational and rotational motions which are detected by web camera. Results of the motion are taken from image processing and neural network. Because of the characteristics of cockpit, the specific color on the helmet is tracked for translational motion. And rotational motion is tracked via neural network. Ratio of two different colored area on the helmet is used as input of network. Neural network algorithms used, such as back-propagation and RBFN (Radial Basis Function Network). Both back-propagation using a characteristic of feedback and RBFN using a characteristic of statistics have a good performances for the tracking of nonlinear system such as a head motion. Finally, this paper analyzes and compares with tracking performance.

A Study on the Application Model of AI Convergence Services Using CCTV Video for the Advancement of Retail Marketing (리테일 마케팅 고도화를 위한 CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델 연구)

  • Kim, Jong-Yul;Kim, Hyuk-Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.197-205
    • /
    • 2021
  • Recently, the retail industry has been increasingly demanding information technology convergence and utilization to respond to various external environmental threats such as COVID-19 and to be competitive using AI technologies, but there is a very lack of research and application services. This study is a CCTV video data-driven AI application case study, using CCTV image data collection in retail space, object detection and tracking AI model, time series database to store real-time tracked objects and tracking data, heatmap to analyze congestion and interest in retail space, social access zone.We present the orientation and verify its usability in the direction designed through practical implementation.

Natural Hand Detection and Tracking (자연스러운 손 추출 및 추적)

  • Kim, Hye-Jin;Kwak, Keun-Chang;Kim, Do-Hyung;Bae, Kyung-Sook;Yoon, Ho-Sub;Chi, Su-Young
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.148-153
    • /
    • 2006
  • 인간-컴퓨터 상호작용(HCI) 기술은 과거 컴퓨터란 어렵고 소수의 숙련자만이 다루는 것이라는 인식을 바꾸어 놓았다. HCI 는 컴퓨터 사용자인 인간에게 거부감 없이 수용되기 위해 인간과 컴퓨터가 조화를 이루는데 많은 성과를 거두어왔다. 컴퓨터 비전에 기반을 두고 인간과 컴퓨터의 상호작용을 위하여 사용자 의도 및 행위 인식 연구들이 많이 행해져 왔다. 특히 손을 이용한 제스처는 인간과 인간, 인간과 컴퓨터 그리고 최근에 각광받고 있는 인간과 로봇의 상호작용에 중요한 역할을 해오고 있다. 본 논문에서 제안하는 손 추출 및 추적 알고리즘은 비전에 기반한 호출자 인식과 손 추적 알고리즘을 병행한 자연스러운 손 추출 및 추적 알고리즘이다. 인간과 인간 사이의 상호간의 주의집중 방식인 호출 제스처를 인식하여 기반하여 사용자가 인간과 의사소통 하는 것과 마찬가지로 컴퓨터/로봇의 주의집중을 끌도록 하였다. 또한 호출 제스처에 의해서 추출된 손동작을 추적하는 알고리즘을 개발하였다. 호출 제스처는 카메라 앞에 존재할 때 컴퓨터/로봇의 사용자가 자신에게 주의를 끌 수 있는 자연스러운 행동이다. 호출 제스처 인식을 통해 복수의 사람이 존재하는 상황 하에서 또한 원거리에서도 사용자는 자신의 의사를 전달하고자 함을 컴퓨터/로봇에게 알릴 수 있다. 호출 제스처를 이용한 손 추출 방식은 자연스러운 손 추출을 할 수 있도록 한다. 현재까지 알려진 손 추출 방식은 피부색을 이용하고 일정 범위 안에 손이 존재한다는 가정하에 이루어져왔다. 이는 사용자가 제스처를 하기 위해서는 특정 자세로 고정되어 있어야 함을 의미한다. 그러나 호출 제스처를 통해 손을 추출하게 될 경우 서거나 앉거나 심지어 누워있는 상태 등 자연스러운 자세에서 손을 추출할 수 있게 되어 사용자의 불편함을 해소 할 수 있다. 손 추적 알고리즘은 자연스러운 상황에서 획득된 손의 위치 정보를 추적하도록 고안되었다. 제안한 알고리즘은 색깔정보와 모션 정보를 융합하여 손의 위치를 검출한다. 손의 피부색 정보는 신경망으로 다양한 피부색 그룹과 피부색이 아닌 그룹을 학습시켜 얻었다. 손의 모션 정보는 연속 영상에서 프레임간에 일정 수준 이상의 차이를 보이는 영역을 추출하였다. 피부색정보와 모션정보로 융합된 영상에서 블랍 분석을 하고 이를 민쉬프트로 추적하여 손을 추적하였다. 제안된 손 추출 및 추적 방법은 컴퓨터/로봇의 사용자가 인간과 마주하듯 컴퓨터/로봇의 서비스를 받을 수 있도록 하는데 주목적을 두고 있다.

  • PDF

Stable Feature Point Selection Using KLT Algorithm for Tracking (KLT 알고리즘을 이용한 추적에서 안정된 특징점 선택)

  • Kim Yong-Jin;Lee Yill-Byung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2006.05a
    • /
    • pp.661-664
    • /
    • 2006
  • 본 논문에서는 특징기반 물체추적을 위해 많이 사용되고 있는 KLT(Kanade-Lucas-Tomasi) 알고리즘을 소개하고, 이 알고리즘을 이용한 특징점(corner) 추출시, 영상에서 잡음의 영향이 KLT 알고리즘의 성능에 어떤 영향을 미치는지 잡음이 포함된 영상과 포함되지 않은 영상을 이용하여 안정된 특징점 추출을 위한 실험을 실시하고 비교 분석하였다.

  • PDF

KUeyes: A biologically motivated color stereo headeye system (KUeyes: 생물학적 시각 모형에 기반한 컬러 스테레오 헤드아이 시스템)

  • 이상웅;최형철;강성훈;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.586-588
    • /
    • 2000
  • KUeyes는 3차원 실세계의 영상처리를 위해 고려대학교 인공시각연구센터에서 개발된 컬러 스테레오 헤드아이 시스템이다. KUeyes는 인간의 시각 시스템을 모델로 하여 다해상도 변환 영상, 칼라 정보와 거리 정보, 움직임 정보를 이용하여 지능적이고 빠르게 객체를 탐지하여 추적한다. 또한 병렬적으로 수행되는 인식기를 통해 탐지된 사람의 얼굴을 인식한다. 다양한 실험 및 분석을 통해 KUeyes가 복잡한 실영상을 대상으로 움직이는 개체를 신시간으로 안정되게 추적하고 인식하는 것을 확인할 수 있었다.

  • PDF

Foreground Motion Tracking and Compression/Transmission of Based Dynamic Mosaic (동적 모자이크 기반의 전경 움직임 추적 및 압축전송)

  • 박동진;윤인모;김찬수;현웅근;김남호;정영기
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.10a
    • /
    • pp.741-744
    • /
    • 2003
  • in this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate perspective projection parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region.

  • PDF

Swarm Based Robust Object Tracking Algorithm Using Adaptive Parameter Control (적응적 파라미터 제어를 이용하는 스웜 기반의 강인한 객체 추적 알고리즘)

  • Bae, Changseok;Chung, Yuk Ying
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.5
    • /
    • pp.39-50
    • /
    • 2017
  • Moving object tracking techniques can be considered as one of the most essential technique in the video understanding of which the importance is much more emphasized recently. However, irregularity of light condition in the video, variations in shape and size of object, camera motion, and occlusion make it difficult to tracking moving object in the video. Swarm based methods are developed to improve the performance of Kalman filter and particle filter which are known as the most representative conventional methods, but these methods also need to consider dynamic property of moving object. This paper proposes adaptive parameter control method which can dynamically change weight value among parameters in particle swarm optimization. The proposed method classifies each particle to 3 groups, and assigns different weight values to improve object tracking performance. Experimental results show that our scheme shows considerable improvement of performance in tracking objects which have nonlinear movements such as occlusion or unexpected movement.

Implementation of smart security CCTV system based on wireless sensor networks and GPS data (무선 센서 네트워크와 GPS정보를 이용한 스마트 보안 CCTV 시스템 구현)

  • Yoon, Kyung-Hyo;Park, Jin-Hong;Kim, Jungjoon;Seo, Dae-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.918-931
    • /
    • 2013
  • The conventional object tracking techniques using PTZ camera detects object movements by analyzing acquired image. However, this technique requires expensive hardware devices to perform a complex image processing. And it is occasionally hard to detect object movements, if an acquired image is low quality or image acquisition is impossible. In this paper, we proposes a smart security CCTV system applying to wireless sensor network technique based on IEEE 802.15.4 standard to overcome the problems of conventional object tracking technique, which enables to track suspicious objects by detecting object movements and GPS data in sensor node. This system enables an efficient control of PTZ camera to observe a wide area, decreasing image processing complexity. Also, wireless sensor network is implemented using mesh networks to increase the efficiency of installing sensor node.

A study on Moving Object Segmentation (이동물체 분할에 관한 연구)

  • Jeo, Youngseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.349-351
    • /
    • 2012
  • 영상분할은 입력 영상에서 특정 영역을 분할하는 처리로서 이동물체추적, 영상 감시, 영상 기반 제어등 다양한 분야에서 중요하게 다루는 기술 중 한 가지이다. 기존 영상 분할 방법은 영역을 기반으로 하는 방법과 경계선을 기반으로 하는 방법 등이 있으며 경계선을 기반으로 이동물체 영역을 분할하는 것이 연산량 감소등 의 많은 이점이 있다. 그러나 영상의 경계가 모호한 경우 적용이 곤란하다. 본 논문에서는 이동벡터를 추출한 후 이동벡터를 분할기법을 제안하고자 한다. 입력영상에 대하여 BMA기법을 적용하여 이동벡터를 추출하여 이동벡터 영상을 구한 후, 이동 벡터영상에 워터쉐이드 기법을 적용하여 영상 분할하였다. 기존 경계선을 이용한 영상 분할과 비교한 결과 노이즈가 적은 결과를 얻었다.

  • PDF