• Title/Summary/Keyword: 영상공간분해능

Search Result 97, Processing Time 0.028 seconds

Flow Field Separating Technique in Bubbly Flow using Discrete Wavelet (이산 웨이블릿을 이용한 Bubbly flow의 유통분리기법)

  • Jo, Hyo-Jae;Doh, Deog-Hee;Choi, Je-Eun;Takei, Masahiro;Kang, Byung-Yoon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.777-783
    • /
    • 2008
  • Nowadays wavelet transforms are widely used for the analyses of PIV velocity vector fields. This is bemuse the wavelet provides not only spatial information of the velocity vectors but also of time and frequency domains. In this study, a discrete wavelet trC1f1$form has been applied to real PIV images of bubbly flows. The vector fields obtained by a self-made cross-correlation PIV algorithm were used for the discrete wavelet transform The performances of the discrete wavelet transform is investigated by changing the level of power of discretization. The decomposed images by the wavelet multiresolution showed conspicuous characteristics of the bubbly flows according to the level changes. The high spatial bubble concentrated area could be evaluated by the constructed discrete wavelet transform algorithm, at which high leveled wavelets could play a dominant roles to reveal the flow characteristics.

A Study of the Characteristics of Highly Spatially Resolved CW-laser-based Aerosol Lidar (고공간분해능 연속 광원을 이용한 미세먼지 라이다의 신호 특성에 관한 연구)

  • Sim, Juhyeon;Kim, Taekeong;Ju, Sohee;Noh, Youngmin;Kim, Dukhyeon
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study we introduce a new method for high-spatial-resolution continuous wave (CW) aerosol lidar that has a high spatial resolution in the near field and a low spatial resolution at long distances. A normal lidar system uses a nanosecond-pulse laser and measures the round-trip TOF between the aerosol and laser to obtain range resolution. In this study, however, we propose a new type of spatially resolving aerosol lidar that uses laser-scattering images. Using a laser-light-scattering image, we have calculated the distance of each scattering aerosol image for a given pixel, and recovered the short-range aerosol extinction. For this purpose, we have calculated the distance image and the contribution range of the aerosol to the given one-pixel image, and finally we have calculated the extinction coefficients of the aerosol with range-resolved information. In the case of traditional aerosol lidar, we can only obtain the aerosol extinction coefficients above 400 m. Using our suggested method, it was possible to extend the range of the extinction coefficient lower then several tens of meters. Finally, we can remove the unknown short-range region of pulsed aerosol lidar using our method.

Optimization of Light Guide Thickness for Optimal Flood Image Acquisition of a 14 × 14 Scintillation Pixel Array (14 × 14 섬광 픽셀 배열의 최적의 평면 영상 획득을 위한 광가이드 두께 최적화)

  • Lee, Seung-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.365-371
    • /
    • 2022
  • In order to obtain excellent spatial resolution in the PET detector, when the detector module is designed using very small scintillation pixels, overlap occurs at the edges and corners of the scintillation pixel array in the flood image. By using a light guide, the occurrence of overlap can be reduced. In this study, after using a scintillator of 0.8 mm × 0.8 mm × 20 mm to form a 14 × 14 array, 3 mm × 3 mm SiPM pixels are combined with 4 × 4 photosensor to reduce the occurrence of overlap. The optimal thickness of the light guide used for this purpose was derived. Quantitative evaluation was performed based on scintillation pixel images of edges and corners where overlap occurs mainly in the acquired flood image. Quantitative evaluation was calculated through the interval and full width at half maximum between scintillation pixel images, and when a light guide with a thickness of 2 mm was used, the best image was obtained with a k value of 2.60. In addition, as a result of measuring the energy resolution through the energy spectrum, the light guide with a thickness of 2 mm showed the best result at 28.5%. If a 2 mm light guide is used, it is considered that the best flood image and energy resolution with minimal overlap can be obtained.

Evaluation of the Modulation Transfer Function for Computed Tomography by Using American Association Physics Medicine Phantom (컴퓨터단층검사에서 AAPM Phantom을 이용한 변조전달함수 평가)

  • Kim, Ki-Won;Choi, Kwan-Woo;Jeong, Hoi-Woun;Jang, Seo-Goo;Kwon, Kyung-Tae;Son, Soon-Yong;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.193-198
    • /
    • 2016
  • In clinical computed tomography (CT), regular quality assurance (QA) has been required. This study is to evaluate the MTF for analyzing the spatial resolution using AAPM phantom in CT exam. The dual source somatom definition flash (siemens healthcare, forchheim, Germany), the brilliance 64 (philips medical system Netherlands) and aquilion 64 (toshiba medical system, Japan) were used in this study. The quantitative evaluation was performed using the image J (wayne rasband national institutes of health, USA) and chart method which is measurement of modulation transfer function (MTF). In MTF evaluation, the spatial frequencies corresponding to the 50% MTF for the CT systems were 0.58, 0.28, and $0.59mm^{-1}$, respectively and the 10% MTF for the CT systems were 1.63, 0.89, and $1.21mm^{-1}$, respectively. This study could evaluate the characteristic of spatial resolution of MTF using chart method, suggesting the quantitative evaluation method using the data.

The comparisons of three scatter correction methods using Monte Carlo simulation (몬테카를로 시뮬레이션을 이용한 산란보정 방법들에 대한 비교)

  • 봉정균;김희중;이종두;권수일
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.73-81
    • /
    • 1999
  • Scatter correction for single photon emission computed tomography (SPECT) plays an important role to improve image quality and quantitation. The purpose of this study was to investigate three scatter correction methods using Monte Carlo simulation. Point source and Jaszack phantom filled with Tc-99m were simulated by Monte Carlo code, SIMIND. For scatter correction, we applied three methods, Compton window (CW) method, triple window (TW) method, and dual photopeak window (DPW) method. Point sources located at various depths along the center line within a 20-cm phantom were simulated to calculate the window ratios and corresponding scatter fractions by evaluating the polynomial coefficients for DPW method. Energy windows were located in W$_1$=92-125 keV, W$_2$=124-126 keV, W$_3$=136-140 keV, W$_4$=140-141 keV, and W$_{5}$=154-156 keV. The results showed that in Jaszack phantom with cold sphere and hot sphere, the TW gave the closest contrast and percentage recovery to the ideal image, respectively, while CW overestimated and DPW underestimated the contrast of ideal one. All three scatter correction methods showed an improved image contrast. In conclusion, scatter correction is essential for improving image contrast and accurate quantification. The choice of scatter correction method should be made on the basis of accuracies and ease of implementation.

  • PDF

Co/Pd 다층박막의 자구형상 및 자구동력학

  • 최석봉;신성철
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.156-156
    • /
    • 1999
  • 자성박막에 존재하는 자기구역의 형상 및 동력학은, 자성박막의 학문적 연구와 응용기술 개발의 핵심을 제공하는 매우 중요한 분야의 하나로서, 최근 크게 관심이 고조되고 있다. 본 연구에서는 차세대 광자기 재질로 각광받고 있는 Co/Pd 다층박막에서의 자기구역 형상 및 자기구역 동력학을 연구하였다. 전자빔 진공증착 시스템을 사용하여, Co 층의 두께와 Pd층의 두께, 그리고 전체 층수가 변화하는 일련의 Co/Pd 다층박막 시료를 제작하였다. 제작된 모든 시료가 명목두께에 대하여 4%의 정밀도로 제작되었음을 확인하였고, 제작된 시료의 자기 및 광자기 성질은 자기이력곡선 등을 측정하였다. 또한 고성능 광자기 Kerr 현미경 시스템을 이용하여 자성박막에 존재하는 자기구역의 형상 및 자기구역 동력학을 관찰하였다. 이 장비는 1,000배의 배율에서 0.3$\mu\textrm{m}$의 공간분해능을 가지며 실시간 자기구역 영상을 CCD 카메라를 통해 컴퓨터에 저장함으로써, 자지구역 거동현상을 관찰할 수 있다. 자성다층박막에 존재하는 자기구역의 형상을 이론적으로 예측하기 위하여, 다층박막 구조에서의 정자기 에너지를 일반적으로 계산할 수 있는 이론을 유도하였다. 이 이론을 통해 다층박막의 자성층의 두께가 두꺼워짐에 따라, 자기구역의 형상이 단일 자기구역 형상에서 줄무늬 자기구역 형상으로 천이함을 예측할 수 있었고, 이러한 지구구역 천이현상을 Co-Pd 다층박막의 자화역전현상을 연구하였고, 새로운 자구동력학 정량분석기술을 개발하여 Co/Pd 다층박막에 적용함으로써 자화역전의 자구벽 이동속도와 핵형성 확률을 각각 정량적으로 구하였다. 이러한 관찰 및 분석기술을 통하여, Co/Pd 다층박막의 층구조에 따라 대조적인 자화역전현상이 존재함을 관찰하였다. 이러한 대조적인 자화역전현상을 결정짓는 요인을 연구하기 위해서 나노자성학이온을 이용한 자화역전현상을 결정짓는 요인을 연구하기 위해서 나노자성학이온을 이용한 자화역전모델을 개발하였으며, 이를 통하여 자성박막의 거시적 자기성질에 의해 이러한 대조적인 자화역전모델을 개발하였으며, 이를 통하여 자성박막의 거시적 자기성지에 의해 이러한 대조적인 자화역전현상이 결정될 수 있음을 설명하였다. 또한, 미시적 자기이력곡선 측정을 통하여 자성박막구조에 따른 국소적인 구조불균일성을 관찰하였고, 이러한 구조불균일성 또한 대조적인 자화역전현상을 결정하는 큰 요인임을 논의하였다.

  • PDF

Phantom Image Evaluations Depending on the Quality Control-Uniformity of Brain Perfusion SPECT Scanner (뇌 관류 SPECT 스캐너의 정도관리-균일도에 따른 팬텀 영상 평가)

  • Jung-Soo, Kim;Hyun-Jin, Yang;Joon, Kim;Chan-Rok, Park
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • To have highly reliable diagnostic performance of it, this study comparatively analyzed spatial resolution of SPECT images and interrelationship depending on the changes of system uniformity of ga㎜a camera through phantom analysis. This study chose 6 kinds of results from quality control (uniformity) of triple head SPECT scanner operated in an university hospital in Seoul for six months. Then, study measured spatial resolutions (FWHM) of the images restructured by injecting radiopharmaceuticals to Jaszczak phantom, and doing SPECT scanning under the same conditions as clinical ones using the analytical program (image J). Quality controls performed by the experimental institution showed that differential uniformity of UFOV ranged from 2.76% to 7.61% (4.46±2.07), and integral uniformity of UFOV ranged from 1.98% to 5.42% (3.01±1.43). Meanwhile, Quantitative analysis evaluations of phantom images depending on the changes of uniformity of SPECT scanner detector showed that as the uniformity values of UFOV and CFOV decreased, FWHM values of phantom images decreased from 8.5 ㎜ to 5.8 ㎜. That is, it was quantitatively identified that the higher uniformity of detector is, the better spatial resolution of images gets (P<0.05). It is very important to perform continuous and consistent quality control of the nuclear medicinal system, and users should be clearly conscious of it.

Development of a Small Gamma Camera Using NaI(T1)-Position Sensitive Photomultiplier Tube for Breast Imaging (NaI (T1) 섬광결정과 위치민감형 광전자증배관을 이용한 유방암 진단용 소형 감마카메라 개발)

  • Kim, Jong-Ho;Choi, Yong;Kwon, Hong-Seong;Kim, Hee-Joung;Kim, Sang-Eun;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Moon-Hae;Joo, Koan-Sik;Kim, Byuug-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.32 no.4
    • /
    • pp.365-373
    • /
    • 1998
  • Purpose: The conventional gamma camera is not ideal for scintimammography because of its large detector size (${\sim}500mm$ in width) causing high cost and low image quality. We are developing a small gamma camera dedicated for breast imaging. Materials and Methods: The small gamma camera system consists of a NaI (T1) crystal ($60 mm{\times}60 mm{\times}6 mm$) coupled with a Hamamatsu R3941 Position Sensitive Photomultiplier Tube (PSPMT), a resister chain circuit, preamplifiers, nuclear instrument modules, an analog to digital converter and a personal computer for control and display. The PSPMT was read out using a standard resistive charge division which multiplexes the 34 cross wire anode channels into 4 signals ($X^+,\;X^-,\;Y^+,\;Y^-$). Those signals were individually amplified by four preamplifiers and then, shaped and amplified by amplifiers. The signals were discriminated ana digitized via triggering signal and used to localize the position of an event by applying the Anger logic. Results: The intrinsic sensitivity of the system was approximately 8,000 counts/sec/${\mu}Ci$. High quality flood and hole mask images were obtained. Breast phantom containing $2{\sim}7 mm$ diameter spheres was successfully imaged with a parallel hole collimator The image displayed accurate size and activity distribution over the imaging field of view Conclusion: We have succesfully developed a small gamma camera using NaI(T1)-PSPMT and nuclear Instrument modules. The small gamma camera developed in this study might improve the diagnostic accuracy of scintimammography by optimally imaging the breast.

  • PDF

Fabrication and Evaluation of a VHF Focusing Ultrasonic Transducer Made of PVDF Piezoelectric Film (PVDF 압전막을 이용한 초고주파 집속 초음파 트랜스듀서의 제작 및 특성 평가)

  • Yoon, Ju-Ho;Oh, Jung-Hwan;Kim, Jung-Soon;Kim, Moo-Joon;Ha, Kang-Lyeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.215-222
    • /
    • 2011
  • In order to obtain high resolution images, a focusing ultrasonic transducer operated in very high frequency (VHF) range was fabricated and its characteristics were evaluated. A 9-${\mu}m$ thick PVDF film with only one metalized surface for electric ground was adhered to a CCP (Copper-clad polyimide) film by using epoxy. It was pressed by a metal ball to form a concave surface and its rear side was filled with the epoxy. The radius of curvature and the f-number of the fabricated transducer are 7.5 mm and 1.7, respectively. The pulse-echo measurement results from a target located at the focal point showed that the frequency bandwidth was 35.0 MHz and the insertion loss near the peak frequency of approximately 40 MHz was about 60 dB. Those values agreed well with the simulation results by the KLM equivalent circuit analysis including the effect of the epoxy bonding layer. When the image of thin copper lines by the 35 MHz transducer of the UBM (Ultrasonic Backscattering Microscope) system was compared with the image by the transducer fabricated in this study, the fabricated transducer was observed that the axial resolution was improved although the lateral resolution was degraded.

Image Quality Evaluation in Computed Tomography Using Super-resolution Convolutional Neural Network (Super-resolution Convolutional Neural Network를 이용한 전산화단층상의 화질 평가)

  • Nam, Kibok;Cho, Jeonghyo;Lee, Seungwan;Kim, Burnyoung;Yim, Dobin;Lee, Dahye
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.211-220
    • /
    • 2020
  • High-quality computed tomography (CT) images enable precise lesion detection and accurate diagnosis. A lot of studies have been performed to improve CT image quality while reducing radiation dose. Recently, deep learning-based techniques for improving CT image quality have been developed and show superior performance compared to conventional techniques. In this study, a super-resolution convolutional neural network (SRCNN) model was used to improve the spatial resolution of CT images, and image quality according to the hyperparameters, which determine the performance of the SRCNN model, was evaluated in order to verify the effect of hyperparameters on the SRCNN model. Profile, structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and full-width at half-maximum (FWHM) were measured to evaluate the performance of the SRCNN model. The results showed that the performance of the SRCNN model was improved with an increase of the numbers of epochs and training sets, and the learning rate needed to be optimized for obtaining acceptable image quality. Therefore, the SRCNN model with optimal hyperparameters is able to improve CT image quality.