DOI QR코드

DOI QR Code

Phantom Image Evaluations Depending on the Quality Control-Uniformity of Brain Perfusion SPECT Scanner

뇌 관류 SPECT 스캐너의 정도관리-균일도에 따른 팬텀 영상 평가

  • Jung-Soo, Kim (Department of Radiological Science, Dongnam Health University) ;
  • Hyun-Jin, Yang (Department of Radiological Science, Dongnam Health University) ;
  • Joon, Kim (Department of Nuclear Medicine, Seoul National University Hospital) ;
  • Chan-Rok, Park (Department of Radiological Science, Eulji University)
  • 김정수 (동남보건대학교 방사선학과) ;
  • 양현진 (동남보건대학교 방사선학과) ;
  • 김준 (서울대학교병원 핵의학과) ;
  • 박찬록 (을지대학교 방사선학과 )
  • Received : 2022.11.12
  • Accepted : 2023.01.05
  • Published : 2023.02.28

Abstract

To have highly reliable diagnostic performance of it, this study comparatively analyzed spatial resolution of SPECT images and interrelationship depending on the changes of system uniformity of ga㎜a camera through phantom analysis. This study chose 6 kinds of results from quality control (uniformity) of triple head SPECT scanner operated in an university hospital in Seoul for six months. Then, study measured spatial resolutions (FWHM) of the images restructured by injecting radiopharmaceuticals to Jaszczak phantom, and doing SPECT scanning under the same conditions as clinical ones using the analytical program (image J). Quality controls performed by the experimental institution showed that differential uniformity of UFOV ranged from 2.76% to 7.61% (4.46±2.07), and integral uniformity of UFOV ranged from 1.98% to 5.42% (3.01±1.43). Meanwhile, Quantitative analysis evaluations of phantom images depending on the changes of uniformity of SPECT scanner detector showed that as the uniformity values of UFOV and CFOV decreased, FWHM values of phantom images decreased from 8.5 ㎜ to 5.8 ㎜. That is, it was quantitatively identified that the higher uniformity of detector is, the better spatial resolution of images gets (P<0.05). It is very important to perform continuous and consistent quality control of the nuclear medicinal system, and users should be clearly conscious of it.

Keywords

Acknowledgement

This paper is supported by the research fund of Dongnam Health University.

References

  1. Bordonne M, Chawki MB, Marie PY, Zaragori T, Roch V, Grignon R, et al. High-quality brain perfusion SPECT images may be achieved with a high-speed recording using 360° CZT camera. EJNMMI Physics. 2020;7:65.
  2. QuiQn YP, Batista Cuellar JF, PQreP SS, RuiP LP. Brain perfusion SPECT in patients with alPheimer's disease treated with recombining human erythropoietin with low content of sialic acid. Ann Clin Case Rep. 2022;7:2231.
  3. Ryoo HG, Choi H, Lee DS. Deep learning-based interpretation of basal/acetaPolamide brain perfusion SPECT leveraging unstructured reading reports. Eur J Nucl Med Mol Imaging. 2020;47:2186-96. https://doi.org/10.1007/s00259-019-04670-4
  4. Fernando R, Damian A. Brain SPECT as a biomarker of neurodegeneration in dementia in the era of molecular imaging: Still a valid option? Front Neurol. 2021;12:1-16. https://doi.org/10.3389/fneur.2021.629442
  5. Wong TH, Shagera QA, Ryoo HG, Ha SY, Lee DS. Basal and acetaPolamide brain perfusion SPECT in internal carotid artery stenosis. Nucl Med Mol Imaging. 2020;54:9-27. https://doi.org/10.1007/s13139-019-00633-7
  6. Sukprakun C, Limotai C, Khamwan K, Pasawang P, Tepmongkol S. A novel method of seiPure onset Pone localiPation by serial Tc-99m ECD brain perfusion SPECT clearance patterns. Brain Imaging and Behavior. 2022;16:1646-56. https://doi.org/10.1007/s11682-022-00640-x
  7. Valotassiou V, Angelidis G, Psimadas D, Tsougos L, Georgoulias P. In the era of FDG PET, Is it time for brain perfusion SPECT to gain a place in alPheimer's disease imaging biomarkers? Eur J Nucl Med Mol Imaging. 2021;48:969-71. https://doi.org/10.1007/s00259-020-05077-2
  8. PeQa QuiQn Y, Sosa PQreP S, Batista Cuellar JF, RodrQgueP Tanty C, Torres Aroche LA, SQncheP EL, et al. Evaluating cerebral perfusion in alPheimer patients and first-degree relatives: Lessons from artemisa province, Medicc Rev. 2021;23(1):55-63. https://doi.org/10.37757/MR2021.V23.N1.11
  9. Bertagnoll L, Brittain J. New atlas to assist practitioners of SPECT/CT with quality control procedures and trouble shooting. Department of Nuclear Sciences and Applications, IAEA; 2020.
  10. Melki S, Chawki MB, Marie PY, Imbert L, Verger A. Augmented planar bone scintigraphy obtained from a whole-body SPECT recording of less than 20 min with a high-sensitivity 360° CZT camera. Eur J Nucl Med Mol Imaging. 2020;47(5):1329-31. https://doi.org/10.1007/s00259-019-04525-y
  11. Yonekura Y, Mattsson S, Flux G, Bolch WE. ICRP publication 140 Radiological protection in therapy with radiopharmaceuticals. Annals of the ICRP. 2019;48(1):5-95. https://doi.org/10.1177/0146645319838665
  12. Kurkowska S, Birkenfeld B, Piwowarska-Bilska H. Physical quantities useful for quality control of quantitative SPECT/CT imaging. Nucl Med Rev. 2021;24(2):93-8. https://doi.org/10.5603/NMR.2021.0020
  13. Davis KM, Ryan JL, Aaron VD, Sims JB. PET and SPECT imaging of the brain: History, technical considerations, applications, and radiotracers. Semin Ultra CT MRI. 2020;41(6):521-9. https://doi.org/10.1053/j.sult.2020.08.006
  14. SuPuki A, Takeuchi W, Ishitsu T, Morimoto Y, Kobashi K, Ueno Y. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads. Ann Nucl Med. 2015;29:682-96. https://doi.org/10.1007/s12149-015-0992-4
  15. NEMA Standards Publication NU 1-2018. Performance measurements of gamma cameras rosslyn. 2018.
  16. Khorshidi A. Assessment of SPECT images using UHRFB and other low-energy collimators in brain study by hoffman phantom and manufactured defects. The European Physical Journal Plus. 2020; 125:135-8. https://doi.org/10.1140/epjp/s13360-020-00238-6
  17. Harrison RL, Elston BF, Byrd DW, Alessio AM, Swanson KR, Kinahan PE. Technical note: A digital reference object representing hoffman's 3D brain phantom for PET scanner simulations. Med Physics. 2020;47(3):1174-80. https://doi.org/10.1002/mp.14012
  18. Park HH, Lee JY. Development and evaluation of the usefulness for Hoffman brain phantom based on 3D printing technique. Journal of Radiological Science and Technology. 2019;42(6):441-6. https://doi.org/10.17946/JRST.2019.42.6.441
  19. Wilson T, Gohn W, Massanes F, Reymann M, Vija H. SPECT simulation of a digital anthropomorphic brain phantom. Physics Med Img. 2022;12031.
  20. Verger A, Lagarde S, Maillard L, Bartolomei F, Guedj E. Brain molecular imaging in pharmacoresistant focal epilepsy: Current practice and perspectives. Rev Neurologique. 2018;174:16-27. https://doi.org/10.1016/j.neurol.2017.05.001
  21. Ferrando R, Damian A. Brain SPECT as a biomarker of neurodegeneration in dementia in the era of molecular imaging: Still a valid option? Neurol. 2021; 12:629442.
  22. Murata T, Yokota H, Yamato R, Horikoshi T, Tsuneda M, Kurosawa R, et al. Development of attenuation correction methods using deep learning in brain-perfusion single-photon emission computed tomography. Med Physics. 2021;48(8):4177-90. https://doi.org/10.1002/mp.15016
  23. Nikolov N, Makeyev S, Korostynska O, Novikova T, Kriukova Y. Gaussian filter for brain SPECT imaging. Innov Biosyst Bioeng. 2022;6(1):4-15. https://doi.org/10.20535/ibb.2022.6.1.128475
  24. TaPegul TE, Polemi AM, Snyder A, Snyder C, Collins PG. Automated phantom analysis for gamma cameras and SPECT: A methodology for use in a clinical setting. J Appl Clin Med Phys. 2020; 21(11):205-14. https://doi.org/10.1002/acm2.13057
  25. Hasan MR, Khan MHR, Rahman MR, ParveP MS. Quality control of gamma camera with SPECT systems. Int J Med Phys, Clinc Engin Rad Onc. 2017;6(3):225-32. https://doi.org/10.4236/ijmpcero.2017.63021
  26. Matsutomo N, Matsumoto S, Yamamoto T, Sato E. Validation of a calibration method using the cross-calibration factor and system planar sensitivity in quantitative single-photon emission computed tomography imaging. Radiol Phys Technol. 2017;10(4):439-45. https://doi.org/10.1007/s12194-017-0416-3
  27. O'Connor MK, Vermeersch C. Critical examination of the uniformity requirements for single-photon emission computed tomography. Med Phys. 1991; 18(2):190-7. https://doi.org/10.1118/1.596706
  28. Jeong EH, Oh JY, Lee JY, Park HH. Deep learning application of gamma camera quality control in nuclear medicine. Journal of Radiological Science and Technology. 2020;43(6):461-7. https://doi.org/10.17946/JRST.2020.43.6.461
  29. AAPM Report 22: Rotating scintillation camera SPECT acceptance testing and quality control. American Association of Physicists in Medicine; 2020.