• Title/Summary/Keyword: 영과잉-포아송분포

Search Result 10, Processing Time 0.021 seconds

Moments of the Bivariate Zero-Inflated Poisson Distributions (이변량 영과잉-포아송 분포의 적률)

  • Kim, Kyung-Moo;Lee, Sung-Ho;Kim, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.9 no.1
    • /
    • pp.47-56
    • /
    • 1998
  • Zero-Inflated Poisson models are mixed models of the Poisson and Bernoulli models. Recently Zero-Inflated Poisson distributions have been used frequently rather than previous Poisson distributions because the developement of industrial technology make few defects in manufacturing process. It is important that univariate Zero-Inflated Poisson distributions are extended to bivariate distributions to generalize the multivariate distributions. In this paper we proposed three types of the bivariate Zero-Inflated Poisson distributions and obtained these moments. We compared the three types of distributions by using the moments.

  • PDF

Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model (이변량 영과잉-포아송모형에서 변화시점에 관한 추론)

  • Kim, Kyung-Moon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.319-327
    • /
    • 1999
  • Zero-Inflated Poisson distributions have been widely used for defect-free products in manufacturing processes. It is very interesting to check the shift after the unknown changepoint. If the detectives are caused by the two different types of factor, we should use bivariate zero-inflated model. In this paper, likelihood ratio tests were used to detect the shift of changes after the changepoint. Some inferences for the parameters in this model were made.

  • PDF

Soccer goal distributions in K-league (K-리그에서 축구 골의 분포)

  • Lee, Jang Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1231-1239
    • /
    • 2014
  • In this paper we analyse the distributions of the number of goals scored by home teams and away teams in K-league soccer outcomes between 1983 and 2012. Real soccer data is explained in K-league using statistical distributions such that Poisson, negative binomial, extreme value and zero inflated Poisson. How close the goals of home and away fits the different distributions are tested by performing chi-square goodness of fit tests. According to these tests, the Poisson distribution gives the best fit to the home goals data. But it is best to model the away goals data on zero inflated Poisson distribution. Also, there is some weak evidence of the dependence for home and away goals.

Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application (조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석)

  • Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.583-592
    • /
    • 2015
  • Zero-inflation has recently attracted much attention in integer-valued time series. This article deals with conditional variance (volatility) modeling for the zero-inflated count time series. We incorporate zero-inflation property into integer-valued GARCH (INGARCH) via conditional Poisson and negative binomial marginals. The Cholera frequency time series is analyzed as a data application. Estimation is carried out using EM-algorithm as suggested by Zhu (2012).

Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data (영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용)

  • Lim, Ah-Kyoung;Oh, Man-Suk
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.505-519
    • /
    • 2006
  • We consider zero-inflated count data, which is discrete count data but has too many zeroes compared to the Poisson distribution. Zero-inflated data can be found in various areas. Despite its increasing importance in practice, appropriate statistical inference on zero-inflated data is limited. Classical inference based on a large number theory does not fit unless the sample size is very large. And regular Poisson model shows lack of St due to many zeroes. To handle the difficulties, a mixture of distributions are considered for the zero-inflated data. Specifically, a mixture of a point mass at zero and a Poisson distribution is employed for the data. In addition, when there exist meaningful covariates selected to the response variable, loglinear link is used between the mean of the response and the covariates in the Poisson distribution part. We propose a Bayesian inference for the zero-inflated Poisson regression model by using a Markov Chain Monte Carlo method. We applied the proposed method to a Korean oral hygienic data and compared the inference results with other models. We found that the proposed method is superior in that it gives small parameter estimation error and more accurate predictions.

An application to Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.

  • PDF

An application to Multivariate Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.177-186
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the correlated response variables are intrested, we have to extend the univariate zero-inflated regression model to multivariate model. In this paper, we study and simulate the multivariate zero-inflated regression model. A real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of multivariate zero-inflated Poisson regression model with the decision tree model.

  • PDF

Mixed-effects zero-inflated Poisson regression for analyzing the spread of COVID-19 in Daejeon (혼합효과 영과잉 포아송 회귀모형을 이용한 대전광역시 코로나 발생 동향 분석)

  • Kim, Gwanghee;Lee, Eunjee
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.375-388
    • /
    • 2021
  • This paper aims to help prevent the spread of COVID-19 by analyzing confirmed cases of COVID-19 in Daejeon. A high volume of visitors, downtown areas, and psychological fatigue with prolonged social distancing were considered as risk factors associated with the spread of COVID-19. We considered the weekly confirmed cases in each administrative district as a response variable. Explanatory variables were the number of passengers getting off at a bus station in each administrative district and the elapsed time since the Korean government had imposed distancing in daily life. We employed a mixed-effects zero-inflated Poisson regression model because the number of cases was repeatedly measured with excess zero-count data. We conducted k-means clustering to identify three groups of administrative districts having different characteristics in terms of the number of bars, the population size, and the distance to the closest college. Considering that the number of confirmed cases might vary depending on districts' characteristics, the clustering information was incorporated as a categorical explanatory variable. We found that Covid-19 was more prevalent as population size increased and a district is downtown. As the number of passengers getting off at a downtown district increased, the confirmed cases significantly increased.

Similarity between the dispersion parameter in zero-altered model and the two goodness-of-fit statistics (영 변환 모형 산포형태모수와 두 적합도 검정통계량 사이의 유사성 비교)

  • Yun, Yujeong;Kim, Honggie
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.3
    • /
    • pp.493-504
    • /
    • 2017
  • We often observe count data that exhibit over-dispersion, originating from too many zeros, and under-dispersion, originating from too few zeros. To handle this types of problems, the zero-altered distribution model is designed by Ghosh and Kim in 2007. Their model can control both over-dispersion and under-dispersion with a single parameter, which had been impossible ever. The dispersion type depends on the sign of the parameter ${\delta}$ in zero-altered distribution. In this study, we demonstrate the role of the dispersion type parameter ${\delta}$ through the data of the number of births in Korea. Employing both the chi-square statistic and the Kolmogorov statistic for goodness-of-fit, we also explained any difference between the theoretical distribution and the observed one that exhibits either over-dispersion or under-dispersion. Finally this study shows whether the test statistics for goodness-of-fit show any similarity with the role of the dispersion type parameter ${\delta}$ or not.

Heat-Wave Data Analysis based on the Zero-Inflated Regression Models (영-과잉 회귀모형을 활용한 폭염자료분석)

  • Kim, Seong Tae;Park, Man Sik
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2829-2840
    • /
    • 2018
  • The random variable with an arbitrary value or more is called semi-continuous variable or zero-inflated one in case that its boundary value is more frequently observed than expected. This means the boundary value is likely to be practically observed more than it should be theoretically under certain probability distribution. When the distribution considered is continuous, the variable is defined as semi-continuous and when one of discrete distribution is assumed for the variable, we regard it as zero-inflated. In this study, we introduce the two-part model, which consists of one part for modelling the binary response and the other part for modelling the variable greater than the boundary value. Especially, the zero-inflated regression models are explained by using Poisson distribution and negative binomial distribution. In real data analysis, we employ the zero-inflated regression models to estimate the number of days under extreme heat-wave circumstances during the last 10 years in South Korea. Based on the estimation results, we create prediction maps for the estimated number of days under heat-wave advisory and heat-wave warning by using the universal kriging, which is one of the spatial prediction methods.