• 제목/요약/키워드: 영과잉 포아송분포

검색결과 10건 처리시간 0.026초

이변량 영과잉-포아송 분포의 적률 (Moments of the Bivariate Zero-Inflated Poisson Distributions)

  • 김경무;이성호;김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권1호
    • /
    • pp.47-56
    • /
    • 1998
  • 영과잉-포아송모형는 포아송분포와 베르누이 분포의 혼합모형으로 볼 수 있다. 최근 기술의 발달로 생산공정에서 불량품이 거의 나타나지 않는 경우가 많아 기존의 포아송 분포 보다 영과잉-포아송 분포가 많이 응용되어 진다. 일변량 영과잉-포아송 분포를 이변량 영과잉-포아송 분포로 확장하는 일은 다변량으로 확장하기 위한 전초작업으로 중요하다. 본 논문에서는 세가지 형태의 이변량 영과잉-포아송 분포를 제시하고 이들 분포의 적률을 구하여보았다. 또한 적률을 이용하여 세가지 분포를 비교하여 보았다.

  • PDF

이변량 영과잉-포아송모형에서 변화시점에 관한 추론 (Inferences for the Changepoint in Bivariate Zero-Inflated Poisson Model)

  • 김경무
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권2호
    • /
    • pp.319-327
    • /
    • 1999
  • 영과잉-포아송분포는 여러 형태의 불량률을 줄이는 생산공정과정에서 유용하게 이용되어 왔다. 또한 생산공정과정 중 미지의 변화시점 이후 불량률의 변화가 있는지를 알아보는 것은 흥미 있는 일이고 연구된바있다. 만약 불량품들이 서로 두가지 다른 형태의 규격에 의해 발생되었다면, 이는 일변량이 아닌 이변량 영과잉-포아송 분포를 이용해야 할 것이다. 본 논문은 이변량 영과잉-포아송모형에서 어느 미지의 시점 이후 분포의 변화가 있는지를 우도비 검정을 통해 알아본다. 또한 변화가 있다면 변화시점과 그리고 여러 형태의 모수들에 대한 점추정량을 알아보려 한다.

  • PDF

K-리그에서 축구 골의 분포 (Soccer goal distributions in K-league)

  • 이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1231-1239
    • /
    • 2014
  • 본 연구에서는 1983년부터 2012년까지의 한국프로축구 K-리그 전 경기 결과를 이용하여 홈 경기와 원정 경기에서의 골의 분포를 분석하였다. 고려된 확률분포는 포아송분포, 음이항분포, 극단치분포 및 영과잉 포아송분포이며, 카이제곱분포를 이용한 적합도검정을 수행하였다. 그 결과 홈경기는 포아송분포, 원정경기는 영과잉 포아송분포가 골의 분포를 위한 최적 적합분포로 간주되며 홈경기와 원정경기 골의 수는 서로 약한 정도의 상관관계가 있는 것으로 나타났다.

조건부 포아송 및 음이항 분포를 이용한 영-과잉 INGARCH 자료 분석 (Zero-Inflated INGARCH Using Conditional Poisson and Negative Binomial: Data Application)

  • 윤재은;황선영
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.583-592
    • /
    • 2015
  • 영-과잉(zero-inflation) 현상은 최근 계수(count) 시계열 분석의 주요토픽으로 다루어지고 있다. 본 논문에서는 영-과잉 계수 시계열의 변동성을 연구하고 있다. 기존의 정수형 모형인 INGARCH(integer valued GRACH) 모형에 조건부 포아송 및 조건부 음이항 분포를 사용하여 변동성에 영-과잉 현상을 추가하였다. 모수 추정 방법으로 EM알고리즘을 사용하였으며 국내 콜레라 발생건수에 적용시켜 보았다.

영과잉 포아송 회귀모형에 대한 베이지안 추론: 구강위생 자료에의 적용 (Bayesian Analysis of a Zero-inflated Poisson Regression Model: An Application to Korean Oral Hygienic Data)

  • 임아경;오만숙
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.505-519
    • /
    • 2006
  • 셀 수 있는 이산 자료(discrete count data)에 대한 분석은 여러 분야에서 활용되고 있지만 영(zero)을 과도하게 포함하고 있는 영과잉 자료는 자료의 성격상 포아송 분포를 따르지 못할 때가 있어 분석에 어려움이 따른다. Zero-Inflated Poisson(ZIP)모형은 이런 어려움을 극복하기 위하여 영에 대한 점확률을 가지는 분포와 포아송 분포를 합성하여 과도한 영과 영이 아닌 자료를 설명하는 모형이다. 설명 변수가 존재할 때는 포아송 분포 부분에서 반응변수의 평균과 공변량사이에 로그선형 연결함수를 사용한 Zero-Inflated Poisson Regression(ZIPR)모형이 사용될 수 있다. 본 논문에서는 Markov Chain Monte Carlo 기법을 이용한 ZIPR모형의 베이지안 추론방법을 제안하고, 이를 실제 구강위생 자료에 적용하며 다른 모형들과 비교한다. 그 결과 베이지안 추론 방법을 적용한 영과잉 모형의 추정오차가 다른 모형들의 추정오차보다 작았고, 예측치가 더 정확했다는 점에서 우수함을 알 수 있었다.

An application to Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권1호
    • /
    • pp.45-53
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the reponse variables have excess zeros, it is not easy to apply the Poisson regression model. In this paper, we study and simulate the zero-inflated Poisson regression model. An real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of zero-inflated Poisson model with the Poisson regression and decision tree model.

  • PDF

An application to Multivariate Zero-Inflated Poisson Regression Model

  • Kim, Kyung-Moo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.177-186
    • /
    • 2003
  • The Zero-Inflated Poisson regression is a model for count data with exess zeros. When the correlated response variables are intrested, we have to extend the univariate zero-inflated regression model to multivariate model. In this paper, we study and simulate the multivariate zero-inflated regression model. A real example was applied to this model. Regression parameters are estimated by using MLE's. We also compare the fitness of multivariate zero-inflated Poisson regression model with the decision tree model.

  • PDF

혼합효과 영과잉 포아송 회귀모형을 이용한 대전광역시 코로나 발생 동향 분석 (Mixed-effects zero-inflated Poisson regression for analyzing the spread of COVID-19 in Daejeon)

  • 김광희;이은지
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.375-388
    • /
    • 2021
  • 본 연구는 대전광역시에서 나타난 확진자 증가 현상을 분석하여 COVID-19의 확산을 방지할 대책 마련에 도움이 되고자 계획되었다. 확진자 증가의 원인이 시민들의 잦은 이동과 장기간 지속한 사회적 거리두기로 인한 피로와 방심에 있다고 보고, 각 행정동의 주별 확진자 수를 반응변수로, 생활 속 거리두기로 전환된 시점으로부터 흐른 시간, 행정동의 버스 하차 인원을 설명변수로 하여 이들의 관계를 모형화하였다. 행정동별 확진자 수가 주 단위로 반복측정 되었고, 포아송분포로 기대되는 0보다 더 많은 0이 관측될 수 있기 때문에 혼합효과 영과잉 포아송 회귀모형을 적용하였다. 행정동의 성격에 따라 확진자 발생 동향이 다를 수 있어서서 서로 유사한 성격을 갖는 행정동을 군집화하여 이를 범주형 설명변수로 사용하였다. 또한 버스 하차 인원의 효과가 행정동의 성격에 따라 달라질 수 있다는 점을 고려하여 두 변수 간의 교호작용항을 포함하였고 상대적으로 번화한 행정동에서 그 효과가 유의한 것으로 나타났다 (유의수준=0.1). 모형 적합 결과 인구수의 증가와 번화한 행정동이라는 요인, 그리고 버스 하차 인원의 증가가 확진자 수의 증가와 중요한 연관 관계를 가진다는 것을 보였다. 한편, 추정된 모형에 따르면 인구수와 버스 하차량이 고정되었을 때 번화한 집단의 확진자 수가 그렇지 않은 집단에 비해 훨씬 적을 것으로 기대되었는데, 이는 코로나 고위험 지역에 대한 시 차원의 강력한 대응이 효과를 발휘한 것으로 해석할 수 있다.

영 변환 모형 산포형태모수와 두 적합도 검정통계량 사이의 유사성 비교 (Similarity between the dispersion parameter in zero-altered model and the two goodness-of-fit statistics)

  • 윤유정;김홍기
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권3호
    • /
    • pp.493-504
    • /
    • 2017
  • 통계청 인구총조사의 출생아 수 자료는 우리가 쉽게 접할 수 있는 가산 자료이며 국가경쟁력 제고를 위한 정부의 출산정책 결정 및 그 기대효과 분석의 기반이 되는 자료이다. 출생아 수 자료 분석에 있어서 포아송 모형 등 가산 모형이 우월하다는 선행 연구결과에 의하여 가산 모형을 통한 자료 분석방법이 활용되고 있다. 이 때 가산 모형에서 가장 많이 사용하는 포아송 모형은 균등상포라는 제한적인 가정을 토대로 하기 때문에 출생아 수 자료 분석에 이 포아송 모형을 그대로 적용한다면 정보의 손실과 편향추정을 피할 수 없게 된다. 이러한 한계를 극복하기 위해 Ghosh 와 Kim (2007)은 영 과잉과 부족으로 인한 과대산포와 과소산포를 동시에 설명할 수 있는 영 변환 모형 (zero-altered model)을 제안하였다. 본 논문에서는 Ghosh 와 Kim (2007)의 영 변환 모형을 적용하여 실제 출생아수분포에서 영 변환 모형의 산포형태모수 ${\delta}$를 도출하고 그 역할에 대하여 분석한다. 그리고 관측분포에서의 산포형태모수 ${\delta}$와 이론적분포와의 차이를 비교하기 위한 적합도 검정통계량과의 유사성을 확인한다.

영-과잉 회귀모형을 활용한 폭염자료분석 (Heat-Wave Data Analysis based on the Zero-Inflated Regression Models)

  • 김성태;박만식
    • Journal of the Korean Data Analysis Society
    • /
    • 제20권6호
    • /
    • pp.2829-2840
    • /
    • 2018
  • 음이 아닌(non-negative) 측정값을 가지는 확률변수에 있어서, 영(0)이 과도하게 측정되는 자료를 반연속형(semi-continuous) 자료와 영-과잉(zero-inflated) 자료로 구분한다. 이러한 자료에서는 특정 확률 분포(probability distribution) 하에서의 확률보다 훨씬 큰 확률로 0을 관측하게 되는데, 연속형(continuous) 확률분포를 고려하는 경우에는 반연속형으로, 이산형(discrete) 확률분포를 고려하는 경우에는 영-과잉이라고 한다. 본 연구에서는 경계값(0)의 측정 여부에 관한 모형과 0보다 큰 확률변수에 대한 확률분포를 활용한 모형 등 두 개의 부문으로 이루어진 모형, 즉 2-부문 모형(two-part model)을 소개하고자 한다. 특히, 이산형 확률분포 중 포아송 분포와 음이항 분포를 고려한 영-과잉 회귀모형(regression model)을 설명하고 그 특성을 파악하고자 한다. 실증연구에서는 이러한 영-과잉 회귀모형을 활용하여 지난 10년(2009년부터 2018년) 간 한국의 여름철(6-8월) 폭염주의보(heat-wave advisory) 및 폭염경보(heat-wave warning) 발생일수를 적합하였다. 또한 공간예측기법 중 하나인 범용크리깅(universal kriging)을 이용하여 적합결과를 바탕으로 한 폭염 발생일수에 대한 예측지도를 작성하였다.