• Title/Summary/Keyword: 엽온

Search Result 61, Processing Time 0.024 seconds

ERRATUM : Comparison of Measured and Calculated Carboxylation Rate, Electron Transfer Rate and Photosynthesis Rate Response to Different Light Intensity and Leaf Temperature in Semi-closed Greenhouse with Carbon Dioxide Fertilization for Tomato Cultivation (ERRATUM : 반밀폐형 온실 내에서 탄산가스 시비에 따른 광강도와 엽온에 반응한 토마토 잎의 최대 카복실화율, 전자전달율 및 광합성율 실측값과 모델링 방정식에 의한 예측값의 비교)

Effect of Reflective Film Mulching on the Growth and Flowering of Antirrhinum majus L. 'Fujinoyuki' in Greenhouse Cultivation (시설재배에서 반사필름 멀칭이 금어초 생육 및 개화에 미치는 영향)

  • Kim, Wan-Soon;Huh, Kun-Yang;Cho, Il-Hwan;Woo, Yong-Hoe
    • Horticultural Science & Technology
    • /
    • v.16 no.3
    • /
    • pp.350-351
    • /
    • 1998
  • This study was conducted to investigate the effect of reflective film(RF) mulching on the growth and flowering of snapdragon 'Fujinoyuki' in greenhouse cultivation. On the spectroradiometry of mulching materials in the wavelength zone of 300nm to 1100nm, 85% of total light source was reflected from RF, while over 95% was absorbed into black polyethylene film(BL). Under plant canopy, light, air temperature, and leaf temperature were higher on the RF mulching than BL, but soil temperature and soil heat flux were higher under the BL. Primary plant growth such as dry weight, stem hardness, lodging, and transpiration was superior when using RF mulching. RF mulching accelerated the plants to bloom about 12 days earlier with admirable cut flower quality.

  • PDF

Effect of Covering Methods with Ventilating Non-Woven Fabric on the Growth and Yield in Leaf Lettuce during Low Temperature Season (통기성 간이 피복재의 피복방법이 저온기에 잎상추의 생육, 수량 및 품질에 미치는 영향)

  • 안종길;최영환
    • Journal of Bio-Environment Control
    • /
    • v.11 no.2
    • /
    • pp.88-92
    • /
    • 2002
  • The study was conducted to estimate stimulation of plant growth of blue and red leaf lettuce (Lactuca sativa L.) as affected by covering methods with vinyl materials containing concentrated PO film. Plants were grown in direct, direct and tunnel, and tunnel covering with 'Pasraido materials' from October 13 to 31. With the covering mean air temperature, soil temperature, leaf temperature and relative humidity remarkedly increased. Higher temperature was observed in the order of direct and tunnel, direct, tunnel covering and the control. Photosynthetic photon flux (PPF, $\mu$mol m$^{-2}$ . s$^{-1}$ ) was observed in reverse order of temperature. Concentration of $CO_2$ was higher during night than during day under the light. Accumulation of highest $CO_2$ at night was obtained from direct coverings followed by direct and tunnel, tunnel covering and the control. Plant height, leaf number and leaf area of blue and red lettuces were stimulated by direct covering. However, there was no significant difference.

Development of Easy Equation for Crop Water Stress Index (CWSIEE) Using the Temperature Difference between Canopy and Air (Tc-Ta) of Fruit Trees (엽온과 기온의 차이를 이용한 노지 과수의 작물 수분 스트레스 지수 산정 간편식 개발)

  • Choi, Yonghun;Lee, Sangbong;Kim, Minyoung;Kim, Youngjin;Jeon, Jonggil;Park, Jeonghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.5
    • /
    • pp.85-91
    • /
    • 2020
  • In order to calculate the Crop Water Stress Index (CWSI), it is necessary to collect weather data (air temperature, humidity, wind speed and solar radiation) and canopy temperature. However, it is not always available to have necessary data sets for CWSI calculation. Therefore, this study was aimed to develop an easy and simple CWSI equation (CWSIEE) using only two data, air and canopy temperatures. Infrared sensors and weather sensors were installed on apple and peach trees and nearby a study area and every ten-minute data were collected from June to October in 2018 and 2019, respectively. A relationship between air-canopy temperature difference and CWSI was statistically analyzed and used to develop CWSIEE using the three dimensional Gaussian model. The performance of CWSIEE against original CWSI showed R2 and NSE to 0.780 and 0.710 for apple trees and R2 and NSE to 0.884 and 0.866 for peach trees. This study found that the level of crop water stress could be easily calculated using CWSIEE with only air and canopy temperature data.

Study on the Enzyme Activity in Leaf-Burning Disease of Panax ginseng C.A. Meyer (인삼엽요병에서 효소활성도의 변화)

  • 양덕조;김명원
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.92-97
    • /
    • 1989
  • This study investigated the effects of high light intensity (100 KLw) and high temperature (45 ℃, dark) on enzyme (glucose-6-phosphate dehydrogenase, acid phosphatase, catalase, peroxidase, and proteinase) activities and characteristics of Panax ginseng C.A. Meyer leaves. Enzyme activity and protein content decreased rapidly under treatment with high light intensity In P ginseng the thermal stabilities of catalase and peroxidase were high (above 70%), and the coagulation rates of soluble proteins were low (below 17%). Therefore, the decrease in enzyme activity and protein content was not caused by increase in leaf temperature due to the high light intensity, but by increase in proteolytic activities. The photochemical formation rate of superoxide radical (O-2) was higher in the P ginseng leaf extracts than in Solanum nigmm, and was accelerated by addition of crude saponin to the buffer extracts.

  • PDF

Developing a Model for Estimating Leaf Temperature of Cnidium officinale Makino Based on Black Globe Temperature (흑구온도를 이용한 천궁 엽온 예측 모델 개발)

  • Seo, Young Jin;Nam, Hyo Hoon;Jang, Won Cheol;Lee, Bu Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Background: The leaf temperature ($T_{LEAF}$) is one of the most important physical parameters governing water and carbon flux, including evapotranspiration, photosynthesis and respiration. Cnidium officinale is one of the important folk medicines for counteracting a variety of diseases, and is particularly used as a traditional medicinal crop in the treatment of female genital inflammatory diseases. In this study, we developed a model to estimate $T_{Leaf}$ of Cnidium officinale Makino based on black globe temperature ($T_{BGT}$). Methods and Results: This study was performed from April to July 2018 in field characterized by a valley and alluvial fan topography. Databases of $T_{LEAF}$ were curated by infrared thermometry, along with meteorological instruments, including a thermometer, a pyranometer, and an anemometer. Linear regression analysis and Student's t-test were performed to evaluate the performance of the model and significance of the parameters. The correlation coefficient between observed $T_{LEAF}$ and calculated $T_{BGT}$ obtained using an equation, developed to predict $T_{LEAF}$ based on $T_{BGT}$ was very high ($r^2=0.9500$, p < 0.0001). There was a positive relationship between $T_{BGT}$ and solar radiation ($r^2=0.8556$, p < 0.0001), but a negative relationship between $T_{BGT}$ and wind speed ($r^2=0.9707$, p < 0.0001). These results imply that heat exchange in leaves seems to be mainly controlled by solar radiation and wind speed. The correlation coefficient between actual and estimated $T_{BGT}$ was 0.9710 (p < 0.0001). Conclusions: The developed model can be used to accurately estimate the $T_{Leaf}$ of Cnidium officinale Makino and has the potential to become a practical alternative to assessing cold and heat stress.

Response of Crop Water Stress Index (CWSI) and Canopy Temperature of Apple Tree to Irrigation Treatment Schemes (관개수준별 사과나무의 엽온 및 수분 스트레스 지수 변화 분석)

  • Kim, Minyoung;Choi, Yonghun;Cho, Junggun;Yun, Seokkyu;Park, Jeonghun;Kim, Youngjin;Jeon, Jonggil;Lee, Sangbong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.5
    • /
    • pp.23-31
    • /
    • 2019
  • Crop response to weather and internal water pressure changes is more sensitive to crop water stress than soil water content. Recently, its implementation to optimal irrigation scheduling has been receiving much attention. This study was conducted to determine and compare the theoretical crop water stress index (CWSI) using meterological data and canopy temperature collected from three different irrigation treatments, which were Tr-1 plot (rainfed), Tr-2 plot (50% of daily evapotranspiration (ET) irrigated) and Tr-3 plot (75% of daily evapotranspiration (ET) irrigated). The readings of canopy temperature and CWSI were significantly different among irrigation treatment schemes. The average canopy temperatures and CWSIs of Tr-1 and Tr-3 plots were $34.6^{\circ}C$ and $32.6^{\circ}C$, 0.79 and 0.64, respectively. Solar radiation had the biggest correlation with CWSI (R=0.68) which was followed by wind speed, relative humidity and air temperature. Overall, the findings of this study indicated that canopy temperatures and CWSIs could be further used for irrigation scheduling for crop growth.

Relativeness between Growth and Bio-informations of Aeroponically Grown Tomato as Influenced by Spray Intervals of Nutrient Solution (양액의 분무간격에 따른 분무경재배 토마토의 생장 및 생체정보와의 관련성)

  • 정순주;소원온;지전영남;영목방부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.154-161
    • /
    • 1992
  • This experiment was carried oui to determine the relativeness between growth, yield characters and bio-informations as influenced by the spray and rest time intervals of nutrient solution. Tomato(Lycopersicon esculentum Mill.) were grown in aeroponic system on a misting schedule of continuously 60 sec, 30 sec and 10 sec at 10 min intervals with full strength Yamazaki's solution recommended for tomato production. The results obtained were as follows : 1. Leaf area was highest in the plot of 30 sec spray and 10 min rest while the forest one was the plot of 60 sec spray and 10 min rest. Growth characteristics in terms of dry weight of each organ, number of flower, number of flower setted and fruit dry weight were greater in the plot of 30 sec spray and 10 min rest than the other treatments. 2. The number of flower increased with decreasing dry weight but number of flower sorted was not significantly different among treatment except for the plot of 60 sec spray and 10 min rest. 3. Leaf dry weight and fruit dry weight were highly correlated so that 30 sec spray and 10 min rest plot which is the highest fruit dry weight showed the largest leaf area. Continuously sprayed plot reduced markedly the fruit dry weight compared with leaf area. Optimum spray and rest time of nutrient solution in the range of this experiment was determined as 30 sec spray and 10 min rest. 4. Solar radiation within glasshouse during daytime reduced severely compared with outdoor one and air temperature within greenhouse was higher than the leaf temperature of tomato plant. The changes of environmental factors, solar radiation, temperature were accompanied with the sensitive change of bio-informations of tomato leaf Especially differences of spray intervals of nutrient solution affected greatly to the changes of bio-informations : leaf water potential, stomatal resistance and leaf temperature etc. 5. The changing patterns of leaf growth as influenced by the spray and rest intervals of nutrient solution were closely related to the leaf water potential, stomatal resistance and leaf temperature. Feasibility was demonstrated that measurement of bio-information of tomato leaf as influenced by the change of environmental factors could be expected to the amount of growth and fruit yield.

  • PDF

Analysis of Spatial and Vertical Variability of Environmental Parameters in a Greenhouse and Comparison of Carbon Dioxide Concentration in Two Different Types of Greenhouses (온실 환경요인의 공간적 및 수직적 특성 분석과 온실 종류에 따른 이산화탄소 농도 비교)

  • Jeong, Young Ae;Jang, Dong Cheol;Kwon, Jin Kyung;Kim, Dae Hyun;Choi, Eun Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.221-229
    • /
    • 2022
  • This study was aimed to investigate spatial and vertical characteristics of greenhouse environments according to the location of the environmental sensors, and to investigate the correlations between temperature, light intensity, and carbon dioxide (CO2) concentration according to the type of greenhouse. Temperature, relative humidity (RH), CO2, and light sensors were installed in the four-different vertical positions of the whole canopy as well as ground and roof space at the five spatial locations of the Venlo greenhouse. Also, correlations between temperature, light intensity, and CO2 concentration in Venlo and semi-closed greenhouses were analyzed using the Curve Expert Professional program. The deviations among the spatial locations were larger in the CO2 concentration than other environmental factors in the Venlo greenhouse. The average CO2 concentration ranged from 465 to 761 µmol·mol-1 with the highest value (646 µmol·mol-1) at the Middle End (4ME) close to the main pipe (50Ø) of the liquefied CO2 gas supply and lowest (436 µmol·mol-1) at the Left Middle (5LM). The deviation among the vertical positions was greater in temperature and relative humidity than other environments. The time zone with the largest deviation in average temperature was 2 p.m. with the highest temperature (26.51℃) at the Upper Air (UA) and the lowest temperature (25.62℃) at the Lower Canopy (LC). The time zone with the largest deviation in average RH was 1 p.m. with the highest RH (76.90%) at the LC and the lowest RH (71.74%) at the UA. The highest average CO2 concentration at each hour was Roof Air (RF) and Ground (GD). The coefficient of correlations between temperature, light intensity, and CO2 concentration were 0.07 for semi-closed greenhouse and 0.66 for Venlo greenhouse. All the results indicate that while the CO2 concentration in the greenhouse needs to be analyzed in the spatial locations, temperature and humidity needs to be analyzed in the vertical positions of canopy. The target CO2 fertilization concentration for the semi-closed greenhouse with low ventilation rate should be different from that of general greenhouses.