• Title/Summary/Keyword: 염소 발생

Search Result 323, Processing Time 0.031 seconds

Time Dependent Evaluation of Corrosion Free Life of Concrete Tunnel Structures Based on the Reliability Theory (해저 콘크리트 구조물의 신뢰성 이론에 의한 시간 의존적 내구수명 평가)

  • Pack, Seung Woo;Jung, Min Sun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.142-154
    • /
    • 2011
  • This study predicted the probability of corrosion initiation of reinforced concrete tunnel boxes structures using the Monte Carlo Simulation. For the inner wall and outer wall in the tunnel boxes, exposed to airborne chloride ion and seawater directly respectively, statistical values of parameters like diffusion coefficient D, surface chloride content $C_s$, cover depth c, and the chloride threshold level $C_{lim}$ were examined from experiment or literature review. Their average values accounted for $3.77{\times}10^{-12}m^2/s$, 3.0% by weight of cement, 94.7mm and 45.5mm for outer wall and inner wall, respectively, and 0.69% by weight of cement for D, $C_s$, c, and $C_{lim}$, respectively. With these parametric values, the distribution of chloride contents at rebar with time and the probability of corrosion initiation of the tunnel boxes, inner wall and outer wall, was examined by considering time dependency of chloride transport. From the examination, the histogram of chloride contents at rebar is closer to a gamma distribution, and the mean value increases with time, while the coefficient of variance decreases with time. It was found that the probability of corrosion initiation and the time to corrosion were dependent on the time dependency of chloride transport. Time independent model predicted time to corrosion initiation of inner wall and outer wall as 8 and 12 years, respectively, while 178 and 283 years of time to corrosion was calculated by time dependent model for inner wall and outer wall, respectively. For time independent model, the probability of corrosion at 100 years of exposure for inner wall and outer wall was ranged 59.5 and 95.5%, respectively, while time dependent model indicated 2.9 and 0.2% of the probability corrosion, respectively. Finally, impact of $C_{lim}$, including values specified in current codes, on the probability of corrosion initiation and corrosion free life is discussed.

펄스 고전압을 이용한 해수모세관방전에서 고전압 펄스 방전특성 연구

  • Seok, Dong-Chan;Yu, Seung-Min;Hong, Eun-Jeong;No, Tae-Hyeop;Lee, Bong-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.248-248
    • /
    • 2011
  • 유전체 모세관을 이용한 해수에서의 펄스고전압 방전 특성을 연구하였다. 내경 1, 2, 3 mm의 구멍이 뚫린 Quartz 블럭에 외경 1, 2, 3 mm의 SUS 핀을 삽입하였고 삽입된 핀의 끝이 해수에 담구어 지도록 하여 고전압 방전을 발생 시켰다. 인가된 펄스 고전압은 5 kHz의 반복 주파수를 가지며, Pulse 폭을 $1{\sim}2.5{\mu}sec$까지 변화 시켜 전압전류 파형과 방전양상을 살펴 보았다. 방전은 펄스폭 변화에 따라 전해전도 전류에 의한 모세관 가열, 모세관내 미세기포형성, 기포내의 코로나 방전 개시 그리고 글로우 또는 아크방전으로 발전하는 것을 확인하였다. 모세관의 길이는 각각의 구경에 대하여 5 mm, 10 mm 두 가지로 변화하여 실험하였고, 모세관 길이 10 mm 조건에서는 방전이 매우 불안정 하였다. 각각의 방전조건별로 1~5분간 방전을 진행하여 해수내의 유리염소의 농도 변화를 살펴본 결과 방전모드가 글로우 또는 아크 방전 모드에서 단위 에너지당 유리염소 발생 수율이 큰 폭으로 증가하는 것을 확인할 수 있었다.

  • PDF

Study on Destruction of Chlorinated Organic Compounds in a Two Stage Molten Carbonate Oxidation System (2단 용융탄산염산화시스템에서 염소유기화합물 분해에 관한 연구)

  • Eun, Hee-Chul;Yang, Hee-Chul;Cho, Yung-Zun;Lee, Han-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1148-1152
    • /
    • 2008
  • Molten carbonate oxidation (MCO) is one of the promising alternative technologies for the treatment of the chlorinated organic compounds because it is capable of trapping chlorine during a destruction of them. In this study, destructions of chlorinated organic compounds ($C_6H_5Cl$, $C_2HCl_3$ and $CCl_4$) and an insulated oil containing PCBs were performed by using the two stage molten carbonate oxidation system. MCO reactor temperature largely affected the destruction of the chlorinated organic compounds. Destruction of the chlorinated organics very efficient in the primary MCO reactor however a significant amount of CO was emitted from the MCO system. This CO emission was gradually decreased by an increase in the primary reactor temperature and oxidizing air feed rate. The HCl emission from the MCO system was below 7 ppm regardless of tested conditions. The chlorine collection efficiencies were in the range of 99.95-99.99%. The destruction of PCBs in the insulated oil was efficient at a temperature above $900^{\circ}C$ and overall destruction efficiency of them was determined as over 99.9999%.

Sonoelectrodeposition of RuO2 electrodes for high chlorine evolution efficiencies (초음파 전기증착법을 활용한 고효율 염소 발생용 루테늄 옥사이드 전극)

  • Luu, Tran Le;Kim, Choonsoo;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.397-407
    • /
    • 2017
  • A dimensionally stable anode based on the $RuO_2$ electrocatalyst is an important electrode for generating chlorine. The $RuO_2$ is well-known as an electrode material with high electrocatalytic performance and stability. In this study, sonoelectrodeposition is proposed to synthesize the $RuO_2$ electrodes. The electrode obtained by this novel process shows better electrocatalytic properties and stability for generating chlorine compared to the conventional one. The high roughness and outer surface area of the $RuO_2$ electrode from a new fabrication process leads to increase in the chlorine generation rate. This enhanced performance is attributed to the accelerated mass transport rate of the chloride ions from electrolyte to electrode surface. In addition, the electrode with sonodeposition method showed higher stability than the conventional one, which might be explained by the mass coverage enhancement. The effect of sonodeposition time was also investigated, and the electrode with longer deposition time showed higher electrocatalytic performance and stability.

Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution (전기적 염소 발생 촉매활성을 위한 성형된 루테늄 산화물 나노로드와 나노시트 전극의 개발)

  • Luu, Tran Le;Kim, Choonsoo;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.373-381
    • /
    • 2017
  • $RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.

Inhibition of Growth and Activity of Iron Oxidizing Bacteria for the Prevention of Acid Mine Drainage Production (철산화 박테리아의 생장 및 활성 억제를 통한 산성광산배수의 발생 저감)

  • Park, Youngtae;Yang, Jungseok;Kwon, Manjae;Yun, Hyunshik;Ji, Minkyu;Jee, Eundo;Lee, Wooram;Ji, Wonhyun;Kwon, Hyunho;Choi, Jaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • Acid mine drainage (AMD) is one of the most severe environmental problem that results from the oxidation of pyrite $(FeS_2)$ and various other metal sulfides. In this study, the influence of microorganism was tested on the process where AMD was released and the method to inhibit AMD generated by microorganisms at abandoned mine area. The activity and growth rate of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, common microorganisms affecting AMD occurrence, were measured. Chlorine dioxide $(ClO_2)$, NaCl, or surfactant (ASOR-770) was used as an inhibitor for working on activity and growth of microorganism. Among the three inhibitors, 10ppm of chlorine dioxide was the most effective inhibitor for AMD control due to the reduced the activity and growth of microorganisms by 20%.

Isolation, Characterization, and Control of Pseudomonas kribbensis and Pantoea vagans that cause Soft-rot Disease Isolated from Chinese Cabbages

  • Lee, Kang Wook;Kim, Geun Su;Kim, Jeong A;Kwon, Do Young;Lee, Jin Ju;Kim, Il Chul;Kim, Sang Gu;Kim, Tae Seok;Lee, Sang Yun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.2
    • /
    • pp.55-62
    • /
    • 2022
  • The bacterial soft-rot disease is one of the most critical diseases in vegetables such as Chinese cabbage. The researchers isolated two bacteria (Pseudomonas kribbensis and Pantoea vagans) from diseased tissue samples of Chinese cabbages and confirmed them as being the strains that cause soft-rot disease. Lactic-acid bacteria (LAB), were screened and used to control soft-rot disease bacteria. The researchers tested the treatments with hypochlorous acid water (HAW) and LAB supernatant to control soft-rot disease bacteria. The tests confirmed that treatments with the HAW (over 120 ppm) or LAB (Lactobacillus plantarum PL203) culture supernatants (0.5 mL) completely controlled both P. kribbensis and P. vagans.

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Rapid Chloride Penetration Test for Concrete Based on the Electrochemical Method (전기 영동법에 기초한 콘크리트의 급속 염소이온 확산 특성 평가)

  • Oh, Sang-Gyun;Park, Dong-Cheon
    • Journal of Navigation and Port Research
    • /
    • v.34 no.10
    • /
    • pp.787-792
    • /
    • 2010
  • It is necessary to predict the penetration of chloride ions for designing RC construction in marine environments. However, it takes a long time to obtain chloride migration coefficients. Therefore, the rapid chloride penetration test (RCPT) is generally used to shorten the test time. But there is a difference between chloride migration coefficients determined by rapid chloride penetration tests and those based on exposure in marine environments. In this study, we evaluated the effect on the chloride ion migration coefficient caused by a change in voltage and NaCl concentration. We also compared the relationship between the chloride ion migration coefficient by RCPT and that by exposure in marine environments. As a result of the experiments, we found that there is only a small change in the experimental factors based on changes in voltage and NaCl concentration and since they are so small, we can conclude that they are in the range of experimental error and test results from chloride ion migration coefficients by RCPT and exposure were very different from each other. In the exposure experiments, when the water-cement ratio was increased, the smaller fine air gaps in concrete affected the chloride ion migration coefficient.