Inhibition of Growth and Activity of Iron Oxidizing Bacteria for the Prevention of Acid Mine Drainage Production

철산화 박테리아의 생장 및 활성 억제를 통한 산성광산배수의 발생 저감

  • Published : 2012.04.01

Abstract

Acid mine drainage (AMD) is one of the most severe environmental problem that results from the oxidation of pyrite $(FeS_2)$ and various other metal sulfides. In this study, the influence of microorganism was tested on the process where AMD was released and the method to inhibit AMD generated by microorganisms at abandoned mine area. The activity and growth rate of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, common microorganisms affecting AMD occurrence, were measured. Chlorine dioxide $(ClO_2)$, NaCl, or surfactant (ASOR-770) was used as an inhibitor for working on activity and growth of microorganism. Among the three inhibitors, 10ppm of chlorine dioxide was the most effective inhibitor for AMD control due to the reduced the activity and growth of microorganisms by 20%.

폐광산의 산성배수(AMD)는 황철석을 비롯한 다른 금속 황화물의 산화를 통해 발생한 폐광산의 산성배수는 환경오염의 원인 중 하나이다. 본 연구에서는 이러한 폐광산의 산성배수가 생성되는 과정에서 산화미생물의 관여 정도를 알아보고, 이를 억제할 수 있는 방법에 대해여 살펴보았다. 산성배수 발생에 영향을 미치는 산화미생물로 Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans을 선정하였으며, 이 산화미생물의 활성 및 생장 속도를 측정하였으며, 이산화염소$(ClO_2)$, NaCl, 그리고 계면활성제(ASOR-770) 를 산발생 억제제로 이용하여 실험을 진행하였다. 실험 결과 10ppm 이산화염소가 가장 효과적인 억제제였으며, 산화미생물의 활성도와 생장도를 20% 까지 감소시켜주었다.

Keywords

References

  1. Akcil, A. and Koldas, S.(2006), Acid Mine Drainage (AMD): Causes, Treatment and Case Studies, Journal of Cleaner Production, Vol. 14, Issues 12-13, pp. 1139-1145. https://doi.org/10.1016/j.jclepro.2004.09.006
  2. Boon, M., Snijder, M., Hansford, G. and Heijnen, J.(1998), The Oxidation Kinetics of Zinc Sulphide with Thiobacillus Ferrooxidans, Hydrometallurgy, Vol. 33, Issue 2, pp. 171-186.
  3. Dastidar, G., Malik, A. and Roychoudhury, K.(2000), Biodesulphurization of Indian (Assam) Coal using Thiobacillus Ferrooxidans (ATCC 13984), Energy Conversion and Management, Vol. 41, Issues 4, pp. 375-388. https://doi.org/10.1016/S0196-8904(99)00085-0
  4. D'Hugues, P., Cezac, P., Cabral, T., Battaglia, F., TruongMeyer, X. M. and Morin, D.(1997), Bioleaching of a Cobaltiferous Pyrite: A Continuous Laboratory-Scale Study at High Solids Concentration, Minerals Engineering, Vol. 10, No. 5, pp. 507-527. https://doi.org/10.1016/S0892-6875(97)00029-0
  5. Fowler, A. and Crundwell, K.(1998), Leaching of Zinc Sulfide by Thiobacillus Ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism, Applied and Environmental Microbiology, Vol. 64, No. 10, pp. 3570-3575.
  6. Haubrich, F. and Tichomirowa, M.(2002), Sulfur and Oxygen Isotope Geochemistry of Acid Mine Drainage - The Polymetallic Sulfide Deposit 'Himmelfahrt Fundgrube' in Freiberg (Germany), Isotopes in Environmental and Health Studies, Vol. 38, Issue 2, pp. 121-138.
  7. Jeong, S. W., Choi, H. C., Kang, J. W., Kim, J., B. and Choi, S. I.(1993), Disinfection and Removal of Phenol by Chlorine Dioxide, Journal of Korean Society of Water and Wastewater, Vol. 7, No. 2, pp. 24-33.
  8. Konishi, Y., Asai, S. and Katoh, H.(1990), Bacterial Dissolution of Pyrite by Thiobacillus-Ferrooxidans, Bioprocess and Biosystems Engineering, Vol. 5, No.5, pp. 231-237. https://doi.org/10.1007/BF00376230
  9. Liu, H.-L., Chiu, C.-W. and Cheng, Y.-C.(2003), The Effects of Metabolites from the Indigenous Acidithiobacillus Thiooxidans and Temperature on the Bioleaching of Cadmium from Soil, Biotechnology and Bioengineering, Vol. 83, Issue 6, pp. 638-645. https://doi.org/10.1002/bit.10714
  10. Malki, M., Gonzalez-Toril, E.,Sanz, J., Gomez, F., Rodriguez N. and Amils, R.(2006), Importance of the Iron Cycle in Biohydrometallurgy, Hydrometallurgy, Vol. 83, Issue 1-4, pp. 223-228. https://doi.org/10.1016/j.hydromet.2006.03.053
  11. Mine Reclamation Corporation.(2010), 2010 Statistical Year Book, pp. 5-6.
  12. Moore, S., Calabrese, J., Dinardi, R. and Tuthill, W.(1978), Potential Health Effects of Chlorine Dioxide as a Disinfectant in Potable Water-Supplies, Medical. Hypotheses, Vol. 4, Issue 5, pp. 481-496. https://doi.org/10.1016/0306-9877(78)90017-8
  13. Munoz, A., Gonzalez, F., Blazquez, L. and Ballester, A.(1995), A Study of the Bioleaching of a Spanish Uranium Ore: I. A Review of the Bacterial Leaching in the Treatmnet of Uranium Ores, Hydrometallurgy, Vol. 38, No. 1, pp. 39-57. https://doi.org/10.1016/0304-386X(94)00039-6
  14. Sand,W., Gerke, T., Hallman, R. and Schipper, A.(1995), Sulfur Chemistry, Biofilm, and the (In)Direct Attack Mechanism, Appl. Micorobiol. Biotechnol., Vol. 43, No. 6, pp. 961-966. https://doi.org/10.1007/BF00166909
  15. Singh, G. and Bhatnagar, M.(1985), Bacterial Formation of Acid-Mine Drainage - Causes and Control, Journal of Scientific and Industrial Research, Vol. 44, pp. 478-485.
  16. Sobek, A., Benedetti, D. and Rastogi, V.(1990), Successful Reclamation using Controlled Release Bactericides: Two Case Studies, Proceedings of the 1990 Mining and Reclamation Conference and Exhibition, West Virginia University, Charleston, Vol. 1, pp. 33-42.
  17. Travis T. and Isamu S.(1993), Effec of pH on Sulfite Oxidation by Thiobacillus Thiooxidans Cells with Sulfurous Acid or Sulfur Dioxide as a Possible Substrate, Journal of Bacteriology, Vol. 176, No. 3, pp. 913-916.
  18. Tyagi, R. D., Blais, J. F., Auclair, J. C. and Meunier, N. (1993), Bacterial Leaching of Toxic Metals from Municipal Sludge - Influence of Sludge Characteristics, Water Environment. Research., Vol. 65, No. 3, pp. 196-204. https://doi.org/10.2175/WER.65.3.2
  19. Wakatsuki, T.(1995), Metal Oxidoreduction by Microbial-Cells, Journal of Industrial Microbiology and Biotechnology, Vol. 14, No. 2, pp. 169-177. https://doi.org/10.1007/BF01569900
  20. Youm, H., Ko, J., Kim, M. and Song, K.(2004), Inhibitory Effect of Aqueous Chlorine Dioxide on Survival of Escherichia Coli O157: H7, Salmonella Typhimurium, and Listeria Monocytogenes in Pure Cell Culture, Korean Journal of Food Science and Technology, Vol. 36, No. 3, pp. 514-517