• Title/Summary/Keyword: 염료재사용

Search Result 50, Processing Time 0.027 seconds

Application of Natural Dyes for Developing Colored Wood Furniture (II) - Color Variation by Treatment Methods of Natural Dyes- (색채 목가구 개발을 위한 천연염료의 이용에 관한 연구(제2보) - 천연염료의 처리 방법에 따른 색 변화 연구 -)

  • Moon, Sun-Ok;Kim, Chul-Hwan;Kim, Gyeong-Yun;Lee, Young-Min;Shin, Tae-Gi;Kim, Jong-Gab;Park, Chong-Yawl
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.70-78
    • /
    • 2007
  • This study explored the efficient dyeing method of aged chestnut wood using the natural dyes extracted from Gardenia jasminoides for, grandiflora, Carthamus tinctorius L., Rhus javanica L., Lithospermum erythrorhizon S. et Z., Caesalpinia sappan L. and Castanea crenata S. et Z.. The color variation of the dyed chestnut woods was also quantitatively evaluated. The wood specimens revealed abundant colors through different dyeing conditions such as dyeing temperature, dye pH, soaking time, and brushing frequency. The chroma and stain concentration of colored woods were calculated with $L^*$, $a^*$ and $b^*$ in order to make color tone measurement. Brushing treatment for colored wood was confirmed as a more economical dyeing method than soaking treatment requiring more time when natural dyeing was done. Furthermore, the desirable tone and shade of color was easily obtained by repetitive brushing treatment using low color tone. During natural dyeing, good color expression was made with high temperature and acidic condition of a dyeing liquor.

Interpretation of Coloring Materials Recorded in Ceremonial Writing of the Hanging Painting of Chiljangsa Temple (Five Buddhas) (칠장사 오불회 괘불탱 화기에 기록된 채색 재료의 해석)

  • Lee, Eun Woo;Yoon, Ji Hyeon;Kwon, Yoon Mi;Shin, Tae Ho
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.519-532
    • /
    • 2020
  • This study aimed to interpret the coloring materials recorded in the ceremonial writing with the scientific investigation results of the Hanging Painting of the Chiljangsa Temple (Five Buddhas). The results confirm that the Jinboon, Joohong, Hwangdan, Hwanggeum and Seokjahwang are clearly connected to lead white, cinnabar, minium, gold, and orpiment, respectively. Danghayeop and samrok are related to Copper trihydroxychloride, while Daecheong and Joongcheong are azurite, and they seems to be classified by the particle size. Yeonji and Chunghwa are organic dyes in red and blue, respectively, with blue confirming the existence of the side, but Yeonji differs from the names of the ancient texts and Chinese characters; it is unclear whether it is a commonly used Yeonji because of differences in the names of the ancient texts. The presence of Sootohwang has not been confirmed in the gwaebultaeng, but it can be extracted from the soil as a yellow-colored material but the possibility of Deunghwang cannot be ruled out.

Analysis on the Textile and Dye Used for the Book Cover and Slipcase Housed in the Oryundae Korean Martyrs Museum (오륜대 한국순교자박물관 소장 필첩 및 첩갑에 사용된 직물 및 염료분석)

  • Baek, Young Mee;Ha, Shin Hye;Bae, Sun Young;Lee, Jung Eun;Kwon, Young Suk
    • Journal of Conservation Science
    • /
    • v.32 no.3
    • /
    • pp.345-352
    • /
    • 2016
  • The purpose of this study is to analyze on the textile used for book covers of "Gukgiboksiksoseon" and "Boepboksajeolboksaek", and slipcase of these books kept in the Oryundae Korean Martyrs Museum in Busan. These records are estimated to be written by Gyeongbin Kim(1831-1907), who was a royal concubine of 24th King Heonjong (reign 1834~1849) of the Joseon Dynasty. The cover textile of slipcase and two books are investigated to be silks by the FT-IR. The cover textile of slipcase is flower patterned satin with silver thread and the cover textile of two books are green and red with Su characters and bat patterned satin. The blackish part of pattern of slipcase is investigated by silver thread by FE-SEM-EDAX. Moreover, by the dye analysis, berberine, brazilin, and carthamin are detected from the cover textile of "Boepboksajeolboksaek". It is indicated that it was dyed with an amur cork-tree, a sappanwood, and a safflower. And rutin which is the main dyestuff of the sophora flower of the pagoda tree was detected from the yellow thread of the cover textile of slipcase.

Analysis of Dyes and Mordants of 16~17th Century Textiles Excavated from Daejeon (16~17세기 출토염직품의 염료와 매염제 분석)

  • Baek, Young-Mee;Kwon, Young-Suk;Goto-Doshida, Sumiko;Saito, Masako
    • Journal of Conservation Science
    • /
    • v.28 no.2
    • /
    • pp.119-129
    • /
    • 2012
  • Excavated textiles provide very important research data on the costume culture of the Joseon dynasty. In particular, dyed textiles are indispensable for textile conservation research and for restoration of remains as well as for general costume culture research. Unfortunately, a prolonged burial environment causes the colors to change and gradually fade after excavation. Therefore, it is very difficult to identify the original color. In this study, natural dyed samples of red, yellow, purple and blue were prepared and analyzed using HPLC-PDA. Dyes of colorants extracted from excavated textile remains were analyzed by HPLC. In addition, mordants were analyzed using (SEM-EDX) in order to estimate the original color. The 16~17th Century's three samples were analyzed, sample 1, and 2 from Eunjin Song's Song Mun-Chang excavated at the Songchon-dong in Daejeon, and sample 3 from Yeosan Song's Song, Hee-Jong excavated at the Mokdal-dong in Daejeon. From the HPLC results, alizarin, purpurin, and indigo were detected on sample 1, alizarin and purpurin on sample 2, ellagic acid and indigo on sample 3. Therefore they were dyed with madder and indigo (sample 1), madder (sample2), pomagranted and indigo (sample 3). Al mordant was identified on three samples.

Decontamination of Waste Water Polluted with Phenolic and Anilinic Compounds Using Plant Materials (식물체를 이용한 Phenol 및 Aniline성 폐수의 정화)

  • Lee, Jung-Eun;Park, Jong-Woo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.228-233
    • /
    • 2000
  • This study was carried out to estimate the possibility on the removal of phenols and anilines, which were contained in pulp or dye waste water, and the reusability of plant materials, shepherd's purse and turnip. Most of phenols catalyzed with shepherd's purse were removed more than 90% in the presence of $H_2O_2$, and the removal was ranged from 53.1% for 2,6-DMP to more than 99% for 2,4,6-TCP when turnip was used as catalysts. The removal of anilines catalyzed with shepherd's purse was ranged from 42.2% for 2-CA to 78.7% for 3,4-DCA in the presence of $H_2O_2$, and in case of turnip, from 31.5% for 2-CA to 90.0 % for 2,4-DCA. The reuse of plant materials was proved to be possible for not only the batch method but also the continuous method. No decreasing removal was observed during 30 cycles in waster water contaminated with 100ppm of 2,4-DCP. However, it was observed that the removal was decreased with increasing the number of cycles in higher concentration of 2,4-DCP(800ppm). Therefore, it could be suggested that the number of reusable cycles depends on the initial concentration of substrates.

  • PDF

Covalent Organic Framework Based Composite Separation Membrane: A Review (공유 유기 골격체 기반 복합 분리막 : 고찰)

  • Jeong Hwan Shim;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.149-157
    • /
    • 2023
  • Covalent organic frameworks (COFs) have shown promise in various applications, including molecular separation, dye separation, gas separation, filtration, and desalination. Integrating COFs into membranes enhances permeability, selectivity, and stability, improving separation processes. Combining COFs with single-walled carbon nanotubes (SWCNT) creates nanocomposite membranes with high permeability and stability, ideal for dye separation. Incorporating COFs into polyamide (PA) membranes improves permeability and selectivity through a synthetic interfacial strategy. Three-dimensional COF fillers in mixed-matrix membranes (MMMs) enhance CO2/CH4 separation, making them suitable for biogas upgrading. All-nanoporous composite (ANC) membranes, which combine COFs and metal-organic framework (MOF) membranes, overcome permeance-selectivity trade-offs, significantly improving gas permeance. Computational simulations using hypothetical COFs (hypoCOFs) demonstrate superior CO2 selectivity and working capacity relevant for CO2 separation and H2 purification. COFs integrated into thin-film composite (TFC) and polysulfonamide (PSA) membranes enhance rejection performance for organic contaminants, salt contaminants, and heavy metal ions, improving separation capabilities. TpPa-SO3H/PAN covalent organic framework membranes (COFMs) exhibited superior desalination performance compared to traditional polyamide membranes by utilizing charged groups to enable efficient desalination through electrostatic repulsion, suggesting their potential for ionic and molecular separations. These findings highlight COFs' potential in membrane technology for enhanced separation processes by improving permeability, selectivity, and stability. In this review, COF applied for the separation process is discussed.

Feasibility Test of One-Dimensional Sodium Hexatitanate as an Anode Material in Dye-Sensitized Solar Cells (1차원 구조를 가지는 육티탄산 나트륨의 염료감응형 태양전지 음극재 사용 가능성 평가)

  • Badema, Badema;Oh, Kwang-Joong;Cho, Kuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.338-343
    • /
    • 2015
  • Dye sensitized solar cells (DSSCs), which is one of the contending renewable energy sources, have the problem of low efficiency. To improve the efficiency, the fast electron transport and long electron lifetime are required. In this study, one-dimensional sodium hexatitanate, which is expected to have an advantageous structure for electron transports, was synthesized and the feasibility of the material on DSSC was tested. Its physical properties were characterized by the SEM, XRD, and BET method. The dye adsorption and solar cell properties were also characterized. In addition to the expectation of fast electron transport, sodium hexatitanate showed longer electron lifetime: This means sodium hexatitanate can improve the DSSC efficiency. However, it showed low current and voltage because of the low surface area leading to the low amount of dye adsorbed. Therefore, it should be mixed with titanium oxide with high surface area for the optimal performance.

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.

Scientific Study of Characteristics and Material Properties of Hanging Painting of Eunhaesa Temple (과학적 분석에 의한 은해사 괘불탱의 상태 및 재료 해석)

  • Lee, Eun Woo;Gyeong, Yu Jin;Yoon, Ji Hyun;Kwon, Yoon Mi;Song, Jeong Won;Seo, Min Seok;Lee, Jang Jon
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.689-700
    • /
    • 2019
  • This study aimed to analyze the nature and characteristics of the preserved state, materials, and colored pigments of a Buddhist painting of Eunhaesa temple(gwaebultaeng), which is Treasure No. 1270 of Korea, through scientific investigation and analysis. Based on the historical background of the subject, the study investigated the aspects of conservation and analyzed the material characteristics of each pigment in the painting. Results indicate that various colors were created using inorganic pigments such as white lead, minium, cinnabar, orpiment, gold, atacamite, malachite, and smalt and using organic pigments such as black and indigo. The Eunhaesa painting used "cho" as a material for wallpaper, which was unusual during the Joseon period. In addition, a white layer was formed using various white pigments, which was also rare during this period.

Application of Response Surface Methodology for Optimization of Nature Dye Extraction Process (천연색소 추출공정 최적화를 위한 반응표면분석법의 적용)

  • Lee, Seung Bum;Lee, Won Jae;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.3
    • /
    • pp.283-288
    • /
    • 2018
  • As the use of environmentally friendly and non-disease natural pigments grows, various methods for extracting natural pigments have been studied. The natural color was extracted from parsley, a vegetable ingredient containing natural dyes. Target color codes of green series of natural dyes extracted as variables #50932C (L = 55.0, a = -40.0, b = 46.0) were set with the pH and temperature of extracted natural color coordinates (of the extracted), and the quantitative intensities of natural dyes were analyzed. During the colorimetric analysis predicted by the reaction surface analysis method, a color coordinate analysis was conducted under the optimal conditions of pH 8.0 and extraction temperature of $60.9^{\circ}C$. Under these conditions, predicted figures of L, a, and b were 55.0, -36.3, and 36.8, respectively, while actual experimental ones confirmed were 69.0, -35.9, and 31.4, respectively. In these results, the theory accuracy and actual error rate were confirmed to be 73.0 and 13.8%, respectively. The theoretical optimization condition of the color difference (${\Delta}E$) was at the pH of 9.2 and extraction temperature of $55.2^{\circ}C$. Under these conditions the predicted ${\Delta}E$ figure was 12.4 while the experimental one was 13.0. The difference in color analysis showed 97.5% of the theoretical accuracy and 4.5% of the actual error rate. However, the combination of color coordinates did not represent a desired target color, but rather close to the targeted color by means of an arithmetic mean. Therefore, it can be said that when the reaction surface analysis method was applied to the natural dye extraction process, the use of color coordinates as a response value can be a better method for optimizing the dye extraction process.