Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.5.338

Feasibility Test of One-Dimensional Sodium Hexatitanate as an Anode Material in Dye-Sensitized Solar Cells  

Badema, Badema (Department of Environmental Engineering, Pusan National University)
Oh, Kwang-Joong (Department of Environmental Engineering, Pusan National University)
Cho, Kuk (Department of Environmental Engineering, Pusan National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.5, 2015 , pp. 338-343 More about this Journal
Abstract
Dye sensitized solar cells (DSSCs), which is one of the contending renewable energy sources, have the problem of low efficiency. To improve the efficiency, the fast electron transport and long electron lifetime are required. In this study, one-dimensional sodium hexatitanate, which is expected to have an advantageous structure for electron transports, was synthesized and the feasibility of the material on DSSC was tested. Its physical properties were characterized by the SEM, XRD, and BET method. The dye adsorption and solar cell properties were also characterized. In addition to the expectation of fast electron transport, sodium hexatitanate showed longer electron lifetime: This means sodium hexatitanate can improve the DSSC efficiency. However, it showed low current and voltage because of the low surface area leading to the low amount of dye adsorbed. Therefore, it should be mixed with titanium oxide with high surface area for the optimal performance.
Keywords
$Na_2Ti_6O_{13}$; NaCl flux; Whisker; Rod; Wire; Dye adsorption; Electron lifetime;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev., 110, 6595 (2010).   DOI
2 J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, and S. Gimenez, The Journal of Physical Chemistry C, 113, 17278 (2009).   DOI
3 P. Yang, R. Yan, and M. Fardy, Nano Letters, 10, 1529 (2010).   DOI   ScienceOn
4 M. Adachi, Y. Murata, I. Okada, and S. Yoshikawa, J. Electrochem. Soc., 150, G488 (2003).   DOI
5 M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, Journal of the American Chemical Society, 126, 14943 (2004).   DOI
6 M. D. Wei, Y. Konishi, H. S. Zhou, H. Sugihara, and H. Arakawa, J. Electrochem. Soc., 153, A1232 (2006).   DOI
7 Y. Wang, T. Sun, D. Yang, H. Liu, H. Zhang, X. Yao, and H. Zhao, Phys. Chem. Chem. Phys., 14, 2333 (2012).   DOI
8 H. K. Ku, H. J. Oh, K. J. Noh, S. C. Jung, W. Kang, and S. J. Kim, Electron. Mater. Lett., 8, 387 (2012).   DOI
9 Y. Shinohara, Y. Ajiki, K. Teshima, and S. Oishi, US Patent, 8669625, B2 (2014).
10 K. Teshima, S. Lee, S. Murakoshi, S. Suzuki, K. Yubuta, T. Shishido, M. Endo, and S. Oishi, European Journal of Inorganic Chemistry, 2010, 2936 (2010).   DOI
11 M. Shirpour, J. Cabana, and M. Doeff, Energ. Environ. Sci., 6, 2538 (2013).   DOI
12 K. M. Reddy, S. V. Manorama, and A. R. Reddy, Materials Chemistry and Physics, 78, 239 (2003).   DOI
13 D. B. Buchholz, J. Liu, T. J. Marks, M. Zhang, and R. P. H. Chang, Acs. Appl. Mater. Inter., 1, 2147 (2009).   DOI
14 X. H. Wang, J. G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, and T. Ishigaki, Journal of the American Chemical Society, 127, 10982 (2005).   DOI
15 T. W. Hamann, R. A. Jensen, A.B.F. Martinson, H. Van Ryswyk, and J. T. Hupp, Energ. Environ. Sci., 1, 66 (2008).   DOI
16 D. K. Hwang, D. Song, S. S. Jeon, T. H. Han, Y. S. Kang, and S. S. Im, Journal of Materials Chemistry A, 2, 859 (2014).   DOI
17 J. Qu, G. R. Li, and X. P. Gao, Energ Environ Sci., 3, 2003 (2010).   DOI   ScienceOn