DOI QR코드

DOI QR Code

Application of Response Surface Methodology for Optimization of Nature Dye Extraction Process

천연색소 추출공정 최적화를 위한 반응표면분석법의 적용

  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University) ;
  • Lee, Won Jae (Department of Chemical Engineering, Dankook University) ;
  • Hong, In Kwon (Department of Chemical Engineering, Dankook University)
  • Received : 2018.01.10
  • Accepted : 2018.02.13
  • Published : 2018.06.10

Abstract

As the use of environmentally friendly and non-disease natural pigments grows, various methods for extracting natural pigments have been studied. The natural color was extracted from parsley, a vegetable ingredient containing natural dyes. Target color codes of green series of natural dyes extracted as variables #50932C (L = 55.0, a = -40.0, b = 46.0) were set with the pH and temperature of extracted natural color coordinates (of the extracted), and the quantitative intensities of natural dyes were analyzed. During the colorimetric analysis predicted by the reaction surface analysis method, a color coordinate analysis was conducted under the optimal conditions of pH 8.0 and extraction temperature of $60.9^{\circ}C$. Under these conditions, predicted figures of L, a, and b were 55.0, -36.3, and 36.8, respectively, while actual experimental ones confirmed were 69.0, -35.9, and 31.4, respectively. In these results, the theory accuracy and actual error rate were confirmed to be 73.0 and 13.8%, respectively. The theoretical optimization condition of the color difference (${\Delta}E$) was at the pH of 9.2 and extraction temperature of $55.2^{\circ}C$. Under these conditions the predicted ${\Delta}E$ figure was 12.4 while the experimental one was 13.0. The difference in color analysis showed 97.5% of the theoretical accuracy and 4.5% of the actual error rate. However, the combination of color coordinates did not represent a desired target color, but rather close to the targeted color by means of an arithmetic mean. Therefore, it can be said that when the reaction surface analysis method was applied to the natural dye extraction process, the use of color coordinates as a response value can be a better method for optimizing the dye extraction process.

환경 친화적이고 질병을 유발시키지 않는 천연색소의 사용이 증가함에 따라 천연색소를 추출하는 다양한 방법이 연구되고 있다. 본 연구에서는 천연염료인 chlorophyll을 포함하고 있는 식물성 원료인 파슬리를 대상으로 천연색소를 추출하였다. 추출용매의 pH와 추출온도를 변수로 추출된 천연염료의 녹색계열의 목표색 코드 #50932C (L = 55.0, a = -40.0, b = 46.0)을 설정하고, 추출된 천연염료의 명도와 색좌표(L, a, b)의 정량적 수치로부터 색도분석을 수행하였다. 반응표면분석법에 의해 예측된 색도분석 중 색좌표 분석은 최적조건인 pH 8.0, 추출온도 $60.9^{\circ}C$에서의 이론적 수치 L (55.0), a (-36.3), b (36.8)를 나타냈고, 실제 실험으로 확인한 결과 L (69.0), a (-35.9), b (31.4)를 나타내, 이론 정확도 73.0%, 실제오차율은 13.8%로 확인되었으며, 색차분석의 ${\Delta}E$의 이론 최적화 값은 pH = 9.2 추출온도 $55.2^{\circ}C$에서 ${\Delta}E$ (12.4)이었고, 실제 실험의 경우 ${\Delta}E$ (13.0)로 나타났다. 색차 분석의 이론정확도 97.5% 및 실제 오차율은 4.5%를 나타냈다. 하지만, 색좌표의 조합이 목표색에 근사한 색을 나타내지 않았고, 단지 산술기하 평균적으로서 목표색에 근사함을 나타냈다. 따라서 천연염료 추출공정에 반응표면분석법을 적용시킬 경우 반응치로 색차 ${\Delta}E$에 비해 색좌표(L, a, b)를 이용하는 것이 색소추출공정의 최적화에 더 우수한 방법인 것으로 사료된다.

Keywords

References

  1. M. M. Kamel, R. M. El-Shishtawy, B. M. Yussef, and H. Mashaly, Ultrasonic assisted dyeing III. Dyeing of wool with lac as a natural dye, Dyes Pigm., 65(2), 103-110 (2005). https://doi.org/10.1016/j.dyepig.2004.06.003
  2. J. Xia, H. Wang, Q.-M. Zhang, Z. Zheng, and Z.-M. Han, The therapeutic effect of curcumin in male albino rats and its putative mechanisms on cerebral microvascular flow, Brain Res., 1642, 131-135 (2016). https://doi.org/10.1016/j.brainres.2016.03.022
  3. H. Ghouila, N. Meksi, W. Haddar, M. F. Mhenni, and H. B. Jannet, Extraction, identification and dyeing studies of Isosalipurposide, a natural chalcone dye from Acacia cyanophylla flowers on wool, Ind. Crops Prod., 35(1), 31-36 (2012). https://doi.org/10.1016/j.indcrop.2011.05.026
  4. I. K. Hong, H. Jeon, and S. B. Lee, Extraction of natural dye from gardenia and chromaticity analysis according to chi parameter, J. Ind. Eng. Chem., 24, 326-332 (2015). https://doi.org/10.1016/j.jiec.2014.10.004
  5. S. Ali, T. Hussain, and R. Nawaz, Optimization of alkaline extraction of natural dye from Henna leaves and its dyeing on cotton by exhaust method, J. Clean. Prod., 17(1), 61-68 (2009). https://doi.org/10.1016/j.jclepro.2008.03.002
  6. T. Belwal, P. Dhyani, I. D. Bhatt, R. S. Rawal, and V. Pande, Optimization extraction conditions for improving phenolic content and antioxidant activity in Berberis asiatica fruits using response surface methodology (RSM), Food Chem., 207, 115-124 (2016). https://doi.org/10.1016/j.foodchem.2016.03.081
  7. A. Alberti, A. A. F. Zelinski, D. M. Zardo, I. M. Demiate, A. Nogueira, and L. I. Mafra, Optimisation of the extraction of phenolic compounds from apples using response surface methodology, Food Chem., 149, 151-158 (2014). https://doi.org/10.1016/j.foodchem.2013.10.086
  8. N. Ilaiyaraja, K. R. Likhith, G. R. Sharath Babu, and F. Khanum, Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM), Food Chem., 173, 348-354 (2015). https://doi.org/10.1016/j.foodchem.2014.10.035
  9. A. A. D'Archivio and M. A. Maggi, Investigation by response surface methodology of the combined effect of pH and composition of water-methanol mixtures on the stability of curcuminoids, Food Chem., 219, 414-418 (2017). https://doi.org/10.1016/j.foodchem.2016.09.167
  10. M. Rahmani, E. Ghasemi, and M. Sasani, Application of response surface methodology for air assisted-dispersive liquid-liquid micro-extraction of deoxynivalenol in rice samples prior to HPLC-DAD analysis and comparison with solid phase extraction cleanup, Talanta, 165, 27-32 (2017). https://doi.org/10.1016/j.talanta.2016.12.031
  11. G. I. Danmaliki, T. A. Saleh, and A. A. Shamsuddeen, Response surface methodology optimization of adsorptive desulfurization on nickel/activated carbon, J. Ind. Eng. Chem., 313, 993-1003 (2017).
  12. J. Cao, Y. Wu, Y. Jin, P. Yilihan, and W. Huang, Response surface methodology approach for optimization of the removal of chromium (VI) by $NH_2$-MCM-41, J. Taiwan Inst. Chem. Eng., 45, 860-868 (2014). https://doi.org/10.1016/j.jtice.2013.09.011
  13. M. G. Ferruzzi and B. J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives, Nutr. Res., 27, 1-12 (2007). https://doi.org/10.1016/j.nutres.2006.12.003
  14. H. Vergara-Dominguez Jose, J. Rios, B. Gandul-Rojas, and M. Roca, Chlorophyll catabolism in olive fruits (var. Arbequina and Hojiblanca) during maturation, Food Chem., 212, 604-611 (2016). https://doi.org/10.1016/j.foodchem.2016.06.020
  15. M. del M. Perez, R. Ghinea, M. J. Rivas, A. Yebra, A. M. Ionescu, R. D. Paravina, and L. J. Herrera, Development of a customized whiteness index for dentistry based on CIELAB color space, Dent. Mater., 32(3), 461-467 (2016). https://doi.org/10.1016/j.dental.2015.12.008
  16. P. E. Ohale, C. F. Uzoh, and O. D. Onukwuli, Optimal factor evaluation for the dissolution of alumina from Azaraegbelu clay in acid solution using RSM and ANN comparative analysis, S. Afr. J. Chem. Eng., 24, 43-54 (2017).
  17. O. Unal, Optimization of shot peening parameters by response surface methodology, Surf. Coat. Technol., 305, 99-109 (2016). https://doi.org/10.1016/j.surfcoat.2016.08.004