• Title/Summary/Keyword: 열 저항값

Search Result 196, Processing Time 0.021 seconds

Development of control system for complex microbial incubator (복합 미생물 배양기의 제어시스템 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.122-126
    • /
    • 2023
  • In this paper, a control system for a complex microbial incubator was proposed. The proposed control system consists of a control unit, a communication unit, a power supply unit, and a control system of the complex microbial incubator. The controller of the complex microbial incubator is designed and manufactured to convert analog signals and digital signals, and control signals of sensors such as displays using LCD panels, water level sensors, temperature sensors, and pH concentration sensors. The water level sensor used is designed and manufactured to enable accurate water level measurement by using the IR laser method with excellent linearity in order to solve the problem that existing water level sensors are difficult to measure due to foreign substances such as bubbles. The temperature sensor is designed and used so that it has high accuracy and no cumulative resistance error by measuring using the thermal resistance principle. The communication unit consists of two LAN ports and one RS-232 port, and is designed and manufactured to transmit signals such as LCD panel, PCT panel, and load cell controller used in the complex microbial incubator to the control unit. The power supply unit is designed and manufactured to supply power by configuring it with three voltage supply terminals such as 24V, 12V and 5V so that the control unit and communication unit can operate smoothly. The control system of the complex microbial incubator uses PLC to control sensor values such as pH concentration sensor, temperature sensor, and water level sensor, and the operation of circulation pump, circulation valve, rotary pump, and inverter load cell used for cultivation. In order to evaluate the performance of the control system of the proposed complex microbial incubator, the result of the experiment conducted by the accredited certification body showed that the range of water level measurement sensitivity was -0.41mm~1.59mm, and the range of change in water temperature was ±0.41℃, which is currently commercially available. It was confirmed that the product operates with better performance than the performance of the products. Therefore, the effectiveness of the control system of the complex microbial incubator proposed in this paper was demonstrated.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

Brewing and Fermenting Characteristics of Makgeolli Produced from High-yielding Rice Varieties (다수성 벼 품종의 양조 특성 연구)

  • Lee, Dae Hyoung;Lee, Yong Sun;Cho, Chang Hui;Seo, Jae Soon;Park, In Tae;Kim, Heui Dong;Lim, Jae Wook
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.714-720
    • /
    • 2013
  • We investigated the brewing and fermenting characteristics of makgeolli produced from high-yielding rice varieties. We used the high-yielding indica rice varieties, Anda and Dasan 1, and the japonica varieties, Deuraechan and Boramchan. Our results showed that the rice protein level was the highest in makgeolli produced from Anda ($7.5{\pm}0.2%$), while the amylose level was the lowest in makgeolli produced from the mid- to late-maturing japonica varieties (Deuraechan, $18.9{\pm}0.7%$; Boramchan, $18.9{\pm}1.4%$). Samples of makgeolli produced from Anda, Deuraechan, and Boramchan by using the Ipguk (Koji) method had an alcohol content of 16.6-17.4% on completion of fermentation. By contrast, makgeolli produced from Dasan 1 had an alcohol content of 14.3%; further, the makgeolli differed significantly in the sensory test and was scored as excellent regarding comprehensive preference. For makgeolli produced by using the uncooked rice fermentation method, samples produced from the indica varieties, Anda and Dasan 1, had lower alcohol contents (17.2% and 17.0%, respectively) and higher total acidity levels (0.33% and 0.31%, respectively) than did samples produced from the japonica varieties, Deuraechan and Boramchan (0.28% for both). In the sensory test, samples produced from Anda and Dasan 1 performed significantly better regarding scent, swallowing, and comprehensive preference.

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.

Effects of Sodium and Gallium on Characteristics of CIGS Thin Films and CdS/CIGS Solar Cells by Co-evaporation Method (Na확산과 Ga첨가에 따른 동시진공증발법으로 제조된 CIGS 박막과 CdS/CIGS 태양전지의 특성)

  • Kwon, S.H.;Lee, J.C.;Kang, K.H.;Kim, S.K.;Yoon, K.H.;Song, J.S.;Lee, D.Y.;Ahn, B.T.
    • Solar Energy
    • /
    • v.20 no.2
    • /
    • pp.43-54
    • /
    • 2000
  • We prepared and characterized $Cu(In_{1-x}Ga_x)Se_2$(CIGS) films using a elemental co-evaporation method for absorbing layer of high efficiency thin film solar cells. The CIGS films deposited on a soda-lime glass exhibited low resistivity because of higher carrier concentration. Na was accumulated at the CIGS surface and the 0 and Se were also accumulated at the surface, suggesting that oxidation is a driving force of Na accumulation. The structure of CIGS film was modified or a secondary phase was formed in the Cu-poor CIGS bulk films probably due to the incorporation of Na into Cu vacancy sites. As the Ga/(In+Ga) ratio increased, the diffraction peaks of $Cu(In_{1-x}Ga_x)Se_2$ films were shifted to larger angle and splitted, and the grain size of $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films became smaller. All $Cu_{0.91}(In_{1-x}Ga_x)Se_2$ films showed the p-type conductivity regardless of the Ga/(In+Ga) ratio. Ag/n-ZnO/i-ZnO/CdS/$Cu_{0.91}(In_{0.7}Ga_{0.3})Se_2$/Mo solar cells were fabricated. The currently best efficiency in this study was 14.48% for $0.18cm^2$ area ($V_{oc}=581.5mV,\;J_{sc}=34.88mA$, F.F=0.714).

  • PDF

Treatment of $Smilax$ $china$ L. Root Extract for Improvement of Storage Stability of $Mang-gae$ Rice Cake (망개떡의 저장성 향상을 위한 청미래덩굴 뿌리 추출물의 첨가)

  • Ko, Yu-Jin;Kim, Jin-Yong;Kim, Eun-Jung;Kim, Eun-Ja;Seol, Hui-Gyeong;Park, Geun-Hye;Chung, Gwon-Yong;Ryu, Chung-Ho
    • Food Science and Preservation
    • /
    • v.19 no.2
    • /
    • pp.167-172
    • /
    • 2012
  • The antimicrobial activities of $Smilax$ $china$ L. against spoilage bacteria isolated from $Mang-gae$ rice cake were investigated and the storage stability of the $Mang-gae$ rice cake was enhanced. Spoilage bacteria, which cause $Mang-gae$ rice cake to rot, were isolated from commercial $Mang-gae$ rice cake, and most of the isolated strains were identified as $Bacillus$ sp. After the leaves, roots, shoots, and stalks of the $Smilax$ $china$ L. were extracted using 50% ethanol as the solvent, their antimicrobial activities were investigated using the paper disc method by treating them with 50 ${\mu}L$ of $Bacillus$ $cereus$, which is known as a major pathogenic micro-organism in foods that contain starch, as the test organism. The antimicrobial activities of the extracts were compared according to the size of the clear zones around the paper discs. The root extract showed significant antimicrobial activities. When red beans, which are used as stuffing for $Mang-gae$ rice cake, were treated with the root extract of the $Smilax$ $china$ L., the viable cell count of the $Mang-gae$ rice cake was 5.04 Log CFU/g after 48-hr storage, and the cake showed significantly slower growth of bacteria than with commercial products. These results show that treatment of red beans with $Smilax$ $china$ root extract could improve the storage stability of $Mang-gae$ rice cake.