• Title/Summary/Keyword: 열 불안정

Search Result 298, Processing Time 0.024 seconds

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 1 : Linear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 1 : 선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.32-40
    • /
    • 2012
  • For predicting eigenfrequency and initial growth rate of combustion instabilities in lean premixed gas turbine combustor, linear thermoacoustic analysis model was developed in the current paper. A model combustor was selected for the model validation, which has well-defined inlet and outlet conditions and a relatively simple geometry, compared to the combustor in the previous works. Analytical linear equations for thermoacoustic waves were derived for a given combustion system. It was found that the prediction results showed a good agreement with the measurements, even though there was underestimation for instability frequencies. This underestimation was more obvious for a longer flame (i.e. wider temperature distribution) than for a shorter flame.

Introduction of Numerical Simulation Techniques for High-Frequency Combustion Instabilities (고주파 연소불안정 예측을 위한 해석기술 개발 사례)

  • Kim, Seong-Ku;Joh, Miok;Han, Sanghoon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.68-77
    • /
    • 2017
  • High-frequency combustion instability results from a feedback coupling between the unsteady heat release rate and the acoustic waves formed resonantly in the combustion chamber. It can be modeled as thermoacoustic problems with various degrees of the assumptions and simplifications. This paper presents numerical analysis of self-excited combustion instabilities in a variable-length lean-premixed combustor and designs of passive control devices such as baffle and acoustic resonators in a framework of 3-D FEM Helmholtz solver. Nonlinear behaviors such as steep-fronted shock waves and a finite amplitude limit cycle are also investigated with a compressible flow simulation technique.

  • PDF

Domestic and Foreign Research Trends in Rocket Combustor Instability (국내외 로켓연소기의 연소불안정 연구동향 분석)

  • Bae, Jinhyun;Jeong, Seokgyu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.47-53
    • /
    • 2017
  • One of the most common causes of failure of space launch vehicles is combustion instability. Combustion instability is a phenomenon that the pressure perturbation inside the combustion chamber is greatly amplified due to the interaction of the pressure perturbation inside the combustion chamber and the heat release perturbation. When this phenomenon becomes worse, an engine failure or launch vehicle crash occurs. In order to predict and avoid such combustion instability, understanding of the phenomenon is indispensable, and numerical, theoretical, and experimental approaches to combustion instability have been carried out worldwidely.

  • PDF

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 2 : Nonlinear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 2 : 비선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.41-47
    • /
    • 2012
  • It is very important to predict the nonlinear behavior of combustion instability such as transition phenomena and limit cycle amplitude for fully understanding and controlling the instabilities. These nonlinear instability characteristics are highly dependent upon the flames' nonlinear dynamics in a gas turbine premixed combustor. In this study, nonlinear instability TA(Thermo-acoustic) models were introduced by applying the concept of flame describing function to the thermoacoustic analysis method. As a result of model development, for a given combustor length, the growth rate of instability was greatly affected by the change in amplitude, although the instability frequency was not. Further researches under various operating conditions and model validation on limit cycle amplitude are required.

Combustion Instability in Gas Turbine Engines (가스터빈에서의 연소불안정 현상)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.63-77
    • /
    • 2008
  • This paper described the general concept of combustion instability and its mechanism in gas turbine engines. The approaching method to study this phenomenon was introduced including the up-to-date research activity in tile world. Combustion instability is one of critical problems, still now, affecting engine performance, durability and operation. In addition it is known that this problem is caused by coupling between fuel or air flow fluctuation and heat release rate in gas turbine engines, which is related with NOx reduction strategies. Therefore, in order to understand the current status of combustion instability we reviewed the combustion instability phenomenon in gas turbine engines.

Study on combustion instabilities in gas turbine combustors (가스터빈 연소기에서의 연소 불안정 측정에 관한 연구)

  • Kim, Dae-Sik;Lee, Jong-Guen;Santavicca, Domenic
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.430-432
    • /
    • 2011
  • An experimental study of the flame response in a turbulent premixed combustor has been conducted in order to investigate mechanisms for combustion instabilities in lean premixed gas turbine combustor. A lab-scale combustor and mixing section system were fabricated to measure the flame transfer function. Measurements are made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The results are analyzed to determine the phase and gain of the flame transfer function as a function of the modulation frequency and operating conditions.

  • PDF

A Study on Heat Release Fluctuation Using Various Hydrocarbon Fuels (다양한 탄화수소 연료를 이용한 열방출 섭동 연구)

  • Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.1-10
    • /
    • 2016
  • For the active control of a combustion instability, a change should be made in pressure fluctuation or heat release fluctuation using an acoustic driver or a secondary fuel injection. Also, to determine the location and timing of a secondary fuel injection, one needs to know the distribution of heat release fluctuation under combustion instability. In the present research, the distribution of heat release fluctuation has been experimentally measured by changing hydrocarbon fuel, inlet velocity, equivalence ratio, and acoustic forcing condition. It was confirmed that heat release fluctuation with regards to vortex shedding was significantly affected by the $Damk{\ddot{o}}hler$ number. Under the cases of the $Damk{\ddot{o}}hler$ number above approximately 4 - 5, hot spot region was generated in the leading edge of vortex and cold spot region was in the trailing edge. On the contrary, the cases of the $Damk{\ddot{o}}hler$ number below 3 showed the opposite trend.

Analysis of Wave Velocity for Temperature Propagation in a Mechanical Face Seal (기계평면 시일에서 온도전파를 위한 파속도의 이론적해석)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.3 no.2
    • /
    • pp.64-67
    • /
    • 1987
  • 미끄럼 운동에 의하여 미세한 시일링 간극에 열이 발생할 때 어떠한 빠르기로 발생된 열이 재질 내부로 전파되는가를 속도의 개념으로 이론적 해석을 하였다. 발생된 마찰열이 시일재질 내부로 전파되는 속도는 불안정한 온도의 파장에 의하여 커다란 영향을 받고 있다.

Effect of Combustion Instability on Heat Transfer in a Subscale Thrust Chamber (연소불안정에 따른 축소형 연소기에서의 열전달 영향)

  • Ahn, Kyubok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3403-3409
    • /
    • 2014
  • Hot-firing tests were carried out using a mixing head with 19 swirl coaxial injectors and a combustion chamber with internal cooling channels. The propellants of liquid oxygen and kerosene(Jet A-1) were burned in a range of chamber pressures (59~82 bar) and mixture ratios (2.0~3.0). The temperature of water used as the cooling fluid was measured at the inlet and outlet of the cooling channels, and the heat flux was calculated. The aim of this study was to examine the effect of combustion instability on heat transfer in a subscale thrust chamber, and detect the temperature variation of cooling water. During several hot-firing tests, combustion instability was encountered which caused a 5~20% increase in heat flux. The peak heat flux took place in the initial stages of combustion instability.

Investigation of Premixed Flame Instability with Heat and Momentum Losses (열 및 운동량 손실이 예혼합화염의 연소불안정성에 미치는 영향에 관한 연구)

  • Kang Sang Hun;Baek Seung Wook;Im Hong Geun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.101-119
    • /
    • 2005
  • For MEMS applications, the effects of the momentum and heat loss on the stability of laminar premixed flames in a narrow channel are investigated by high-fidelity numerical simulations. A general finding is that momentum loss promotes the Saffman-Taylor (S-T) instability which is additive to the Darrieus-Landau (D-L) instabilities, while the heat loss effects result in an enhancement of the diffusive-thermal (D-T) instability. These effects are also valid in nonlinear behavior of the premixed flame. The simulations of multiple cell interactions are also conducted with heat and momentum loss effects.