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1. Introduction

Mechanical face seals are widely used to
liquids and gases in industrial applications
such as gas turbines, hydraulic actuators,
pumps, and reactor fueling systems. The
sealing function of mechanical face seal is
achieved by two primary seal rings with fa-
ces to minimize or prevent leakage. One of
the primary seal rings is attached to the
housing.

The sliding contact between two seal rings
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is continuously maintained by forces acting
in axial direction and as a result heat in the
vicinity of the interface is generated. This
phenomenon was investigated by Barber (1,
2]). This heat may lead to the destruction
of the interface contact areas. The frictio-
nal heating due to the irregularity of the
contacting surfaces may be concentrated on
particular regions of the interface. These
regions expanded above the level of the su-
rrounding surface and reduced the area of

real contact, thereby concentrating the co-
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ntact and elevating the.local temperature
still futher. This process is a thermoelastic
instability. Thermoelastic instability has be-
en studied in detail by Burton, et al. [3-5).
To analyze this phenomenon it may be useful
to predict the speed of temperature propa-
gation into the body.

In order to predict the wave velocity for
temperature propagation into the body, cla-
ssical equation of heat flow has been applied
to a seal-like configuration with one face
having a sinusoidally varying temperature
distribution. This analytical method may be
useful to explain the thermoelastic instabil-

ity phenomenon in the sliding contact.
2. Analysis

A thermally conductive plate slides on a
thermal insulator. The conductor moves

against a stationed insulator at velocity U
along rhe xaxis. The problem of a semi-infinite
blade geometry is shown in Fig. 1.

We assume that the heat generated by vi-
scous friction between the parallel plates is
transferred into the solid. The face geome-
try with a sinusoidal waviness will cause
the non-uniform heating. This may be led to
the thermoelastic deformation in the inter-
face. A problem on the conduction of heat

of non-steady state and moving temperature

~————— ]

u
T(x,0,1)
SV X
Fig.1 Semi-infinite blade with a sine var-

iation in the surface temperature

disturbance will be considered.
To simplify the equation of heat flow, we

assume the width z of the blade to be small.

It is assumed that the thermal diffusivity,

am within the metal does not vary with tempe-

rature. The governing differential equation

can then be written.
3T 1 oT

oy’ am ot

(1)

where T is the temperature distribution in
the body and t is time, Eq. (1) may be so-
lved using the following boundary conditions.
The temperature variations relative to the

fixed surface are assumed as follow :

T(x,0,0) =T, lep*sin(xix— (c+U)t}](2a)
Tlx,y,t)=0 as y— o (2b)

where ‘Ti| is a constant amplitude of tem-
perature, B represents the exponent of gr-
owth of temperature wave, c¢ denotes the
transversal velocity of temperature wave,

and x is the wave number defined as
x=2n/A (3)

where A is a wavelength.
The corresponding S problem of Eq(1)

is defined by

s 1 88
S e (4)

with the boundary conditions

S(x,0,0) = |Tilef cos(xix~ (¢+U) th I(5a)

Six,yv,t)=0 as v— oo (5b)

If we introduce the complex combination

T=85-+i-T, it is constructed by multiplying
Eq. (1) to Eq.(2b) by i and adding them
to Eq. (4) to Eq. (5b), respectively. The

modified equation for T is then given by
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with the boundary conditions

T(x0,t) = I T, lei fex—[x(c+U) +ig)t} (Ta)
T(x,y,t):O as y — oo (7b)

The solution form of the modified equation
(6) may be written as

T:Y(y)eiixx~[x(c+U)+iBJt} (8)

where the function Y (y) is determined so
that the heat transfer equation(6) and its
boundary conditions (7a,b) must be satis-
fied. Substituting Eq.(8) into Eq.(6) gives
Y”+i£"_<c_f#)~t'ﬁ_ Y=0 (9)
m
Substituting Eq. (8) into the boundary
conditions (7a,b) yields

Y (0)=|T,]| (10a)
Yy)=0 y—oo (10b)

Therefore the ordinary differential equation

(9) can be solved as

Y —BielVi€y +Bze‘i\//’i—f—y (11)
where
(c+U)+i

Consider the complex relationship for Eq.
(11) and substitute it into Eq. (8). Then

T=B,e

(13)
Using the first boundary condition (7a),

the unknown coefficient B, of Eq.(13) is
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v/—%—y+i {ex — (x(c +U)+iﬂ]t+\/_‘g2'y}

iR \/_%y-f-i {xx — (x{c+U)+iglt — @y}
.8

obtained as, B,=|T,|. Since the tempera-
ture disturbance should be finite as y beco-
mes infinite, B, is zero. Thus, the soluti-

on of Eq.(6) becomes

T=|T,| {cos(x(x— (c+U)1) + (a—b}y]
+i sinlx{x— (c+U)th+ (a—b)y]}
e— (a+b)y+ 4t

(14)
where
a= 4b§ (15a)
b{~x<c+U)+[x2(c+U)2+ﬂ’J 12 ]
h 4am
(15b)

The negative case of Egq. (15b) will be
discarded because the temperature should
be bounded as y goes to infinite. Since T—
S+i-T, the soultion of the temperature pe-
rturbation in the body may be found

-(a+b)y+ Bt

T=|T;le sinfx(x— (c+U)t)

+(a—b)yt (16)

The temperature fluctuations due to the
frictional heating on the edge of the body
are propagated into the body with the wave

velocity ¢ given by [ 6]
c={2an(x(c~U)Jt"? (17)

We may consider limiting case; non-mov-
ing plate, 1. e, U=0. The temperature

wave can propagate into the solid even tho-
ugh the body does not move. Thus we have
to discard the negative case. The wave eq-

uation of Eq.(17) may be rearranged as

em Z2am )4 4 AU

A am

)l/ZJ (18)

This equation indicates an importance of

the wavelength to the wave velocity into the
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body.
3. Conclusion

Fig. 2 shows the distributions of wave
velocity ¢ with the sliding velocity U of the
conductor, Curves are plotted for various
values of the wavelength. As the sliding
speed increases, the distribution of the wa-
ve velocity increases with approximately
half of a parabolic shape. At low value of
the wavelength, the wave velocity is much
higher than the long wavelength.

Equation (18) serves to provide the est-
imate of the wave velocity into the body as
a function of material property, wavelength
and speed of the blade. The wavelength of
temperature disturbance appears to be an
important factor to predict the wave veloc-
ity when the heat transfers to the body.
The wave velocity expression (18) may be
essential to understand the thermoelastic
instability phenomenon in frictionally heated

sliding contact.

Wave velocity, ¢ (m/sec)

Sliding velocity, U (m/sec)

Fig. 2. Relationship between the wave veloc-
ity and the sliding speed of body with

various values of the wavelength.
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