• Title/Summary/Keyword: 열펌프의 성능

Search Result 372, Processing Time 0.022 seconds

Prediction of GHP Performance Using Cycle Analysis (사이클 해석을 통한 GHP 성능 예측)

  • Cha, Woo Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon;Jeon, Si Moon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper a prediction method of GHP performance is proposed for increasing design accuracy. Two compressors with different capacity and 2311cc gas engine are used for prediction and the target capacity of GHP is 25HP. For predicting GHP performance at first the operation points are randomly selected and then as compared with compressor performance date and heat exchanger characteristic, more accurate operating points are decided through recursive calculation. Lastly engine performance date is used for calculating gas consumption volume. Predicting heating mode performance of GHP, evaporator is separated to the two section of absorbing heat in outdoor air and in engine. From the experimental results, it was found that the simulation model is good for the predicting GHP efficiency and the difference of predicted and measured efficiency is less than 5%.

Thermodynamic Performance Analysis of Heat Pump Using Thermoelectric Semiconductor (열전반도체를 이용한 열펌프의 열역학적 성능 해석)

  • 박영무
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.95-103
    • /
    • 1993
  • A conceptual thermoelectric heat pump(cooling mode) of small capacity is designed. Its performance is investigated through parametric analysis. COP and cooling capacity decease as the ambient temperature increases with ${\mu}$, J, T$\sub$wi/, fixed. To design a system of fixed capacity comes to calculate ${\mu}$ and J when T$\sub$wi/, and T$\sub$a/ are given. As v is fixed by semi-conductor manufacturers, optimum combination of n and I should be searched for ν. Optimum current could be calculated using ${\mu}$-J curve and optimum value of ${\mu}$. COR$\sub$R/ increases as water flow rate increases and T$\sub$a/ decreases. The effect of heat transfer coefficient at hot(heat releasing) side is more significant than that at cold(heat absorbing) side.

  • PDF

Performance Improvement Technology on a Continuous Heating Heat Pump at Frost Condition (착상조건에서 연속난방이 가능한 히트펌프 성능 향상 기술)

  • Jeon, Chang-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.573-577
    • /
    • 2013
  • Heat pumps come into wide use because high energy efficiency can be obtained and diverse heat sources like geothermal heat, waste heat and air are available. It is necessary for an air source heat pump to defrost in order to remove frost on the surfaces of an outdoor heat exchanger. It is impossible for continuous heating if reverse cycle operation is used as defrosting method, furthermore it causes the degradation of COP. In this study an fin-tube heat exchanger with three rows was used as an outdoor coil. One row among three rows of the heat exchanger was used like a condenser in order to remove frost on it, the others were used as evaporator to accomplish continuous heating. Each row was switched in order from a condenser to an evaporator in specified time interval. Tests were carried out during minimum 180 minutes at the defrost-heating test condition(dry bulb temperature $2^{\circ}C$, wet bulb temperature $1^{\circ}C$) described in KS C 9306. Time-averaged COP was about 20% higher than that of conventional defrosting method.

Experimental study on heating performance characteristics of electric heat pump system using stack coolant in a fuel cell electric vehicle (연료전지 스택 폐열 활용 전동식 히트펌프 시스템 난방 성능 특성 연구)

  • Lee, Ho-Seong;Kim, Jung-Il;Won, Hun-Joo;Lee, Moo-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.924-930
    • /
    • 2018
  • The objective of this study was to investigate heating performance characteristics of electric heat pump system in a fuel cell electric vehicle (FCEV). In order to analyze heating performance characteristics of electric heat pump system with plate-type heat exchanger using stack coolant to evaporate the refrigerant, R-134a, each component was installed and tested under various operating conditions, such as air inlet temperature of inner condenser and compressor speed. When the air inlet temperature of inner condenser was varied from $0.0^{\circ}C$ to $-20.0^{\circ}C$, heating capacity was not quite different due to similar temperature gap between inlet and outlet of inner condenser with electric-driven expansion valve (EEV). However, COP increased until certain EEV opening, especially under 45.0%, because of decreasing power consumption. According to the compressor speed variation from 2,000 to 4,000 RPM, heating capacity and COP were found to have opposite trend. In the future works, stack coolant conditions as the heat source for tested heat pump system were analyzed with respect to heating performance, such as heating capacity and COP.

Study on the Performance Characteristics of the Solar Hybrid System with Heat Pump Operating Temperature during Winter Season (겨울철 열펌프 작동온도에 따른 태양열 하이브리드 시스템의 성능특성에 관한 연구)

  • Kim, Won-Seok;Cho, Hong-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.821-827
    • /
    • 2010
  • Study on the performance characteristics of the solar hybrid system with heat pump operating temperature during winter season has performed by using an experimental test. The system performance and operating characteristics with the heat pump operating temperature, hour and load condition were investigated and analyzed. As a result, the hot water temperature was significantly affected by the heat pump operating temperature at the morning(time 1) and noon(time 2). However, hot water temperature was set by the radiation quality and collecting operation hour at the afternoon(time 3). In addition to the solar fraction was decreased for the high heat pump operating temperature because the heat pump operated with a long operating time and short operating period.

Theoretical Study on the Performance in a Solar-Geothermal Hybrid R22 Heat Pump During Winter Season according to Heat Source Temperature (열원의 온도변화에 따른 겨울철 태양열-지열 하이브리드 R22 열펌프의 성능에 관한 해석적 연구)

  • Kang, Byun;Cho, Honghyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2012
  • The Solar and geothermal energy have many advantage like low cost, non-toxic, and unlimited. But those the have very low energy efficiency. In this study, the theoretical study of performance in a sola-geothermal hybrid heat pump with operating conditions has carried out. As a result, as the solar radiation increases from 1 $MJ/m^2$ to 20 $MJ/m^2$, the heat pump operating time decreases by 19.5% from 18 times to 14.5 times and the heat pump heat decreases by 23%. Besides, the heating COP increases by 21.4% when the evaporator inlet temperature increases from $11^{\circ}C$ to $19^{\circ}C$. By adapting the geothermal system into a solar hybrid R22 heat pump, the system performance and reliability increases significantly for variable operating conditions during winter season.

Effect of Fluid Viscosity on Centrifugal Pump Performance (유체의 점성이 원심펌프 성능에 미치는 영향)

  • Kim, Noh-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.599-605
    • /
    • 2013
  • The characteristics of centrifugal pump performance according to fluid viscosity change were studied experimentally. A small volute pump with low specific speed was tested by changing the viscosity of an aqueous solution of sugar and glycerin, which is considered a Newtonian fluid. After finishing the test, the total head, shaft horsepower, and pump efficiency were compared with those of a water pump. The results are summarized as follows: (1) when the fluid viscosity is increased, the shut-off head shows very little change but the total head decreases gradually as the flow increases, and this makes the H-Q curve leaning rapidly, and (2) when the fluid viscosity is increased, the shaft horsepower shows very little change at the shutoff condition; however, the shaft horsepower increases more rapidly with an increase in the flow and viscosity.

Study of Knudsen Pump using Vacuum Chamber and It's Upgrade Plan to Thermal Vacuum Chamber (고고도 우주환경 모사용 진공챔버를 이용한 누센펌프의 연구와 열진공챔버로의 개선 방향)

  • Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.361-364
    • /
    • 2009
  • Vacuum facility is required for high altitude space environment test to develop small thruster to be applied for micro-satellite. After selecting vacuum equipment and integrating the chamber to simulate 100-120km attitude with max, $10^{-5}\;torr$. We tested the performance of high vacuum chamber. We designed, fabricated the knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum conditions. We described the upgrade plan to a thermal vacuum chamber.

  • PDF