• Title/Summary/Keyword: 열탄성 거동

Search Result 96, Processing Time 0.029 seconds

Unsteady Thermoelasic Deformation and Stress Analysis of a FGM Rectangular Plate (경사기능재료 사각 판의 비정상 열 탄생변형과 응력해석)

  • Kim, Kui-Seob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.91-100
    • /
    • 2004
  • A Green's function approach is adopted for analyzing the thermoelastic deformations and stresses of a plate made of functionally graded materials(FGMs). The solution to the 3-dimensional unsteady temperature is obtained by using the laminate theory. The fundamental equations for thermoelastic problems are derived in terms of out-plane deformation and in-plane force, separately. The thermoelastic deformation and the stress distributions due to the bending and in-plane forces are analyzed by using a Green's function based on the Galerkin method. The eigenfunctions of the Galerkin Green's function for the thermoelastic deformation and the stress distributions are approximated in terms of a series of admissible functions that satisfy the homogeneous boundary conditions of the rectangular plate. Numerical analysis for a simply supported plate is carried out and effects of material properties on unsteady thermoclastic behaviors are discussed.

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

Development of Aerodynamic Thermal Load Element for Structural Design of Hypersonic Vehicle (극초음속 비행체의 구조설계를 위한 공력 열하중 요소 개발)

  • Kang, Yeon Cheol;Kim, Gyu Bin;Kim, Jeong Ho;Cho, Jin Yeon;Kim, Heon Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.892-901
    • /
    • 2018
  • An efficient aerodynamic thermal load element is developed to reflect the effect of coupled aero-thermo-elastic behaviors in the early design stage of hypersonic vehicle. To this aim, semi-analytic relationships depending on structural deformation are adopted for pressure and thermal load, and the element is formulated based on the relations. The proposed element is implemented in the form of ABAQUS user subroutine, and coupled finite element analysis is carried out to investigate the aero-thermo-elastic behaviors of control surface of hypersonic vehicle. Through the analysis, usefulness of the proposed aerodynamic thermal load element is identified.

Effects of the Thermal Stress and Water Pressure on the Deformation Behavior of Granite (열응력과 수압이 화강암의 변형 거동에 미치는 영향)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2011
  • In this study, effects that thermal stress and water pressure have on the deformation behaviour of granite specimens recovered in Gagok Mine are estimated. To analyze effects of the thermal stress and water pressure on the deformation behaviour, granite specimens were preheated with cycles of predetermined temperatures ranging $200^{\circ}C$ to $700^{\circ}C$ and 500, 600, $700^{\circ}C$ specimens were pressurized to 7.5 MPa. The deformation behaviour of the specimens had been studied by performing uniaxial compressive tests. Axial and lateral strains of specimens were found to increase with increasing temperature, and above $600^{\circ}C$, the increase of strains were more pronounced. The reduction trends of uniaxial compressive strength and Young's modulus with temperature appeared to follow an exponential decay function. Specimens under water pressure showed the more inelastic deformation characteristics, which means that water pressure has an effect on the widening and extending of micro-cracks existed in preheated specimens.

Optimum Design of Thermoelastic Multi-Layer Cylindrical Tube (열탄성 거동을 나타내는 다층 실린더의 최적설계)

  • 조희근;박영원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.179-188
    • /
    • 2000
  • Multi-disciplinary optimization design concept can provide a solution to many engineering problems. In the field of structural analysis, much development of size or topology optimization has been achieved in the application of research. This paper demonstrates an optimum design of a multi-layer cylindrical tube which behaves thermoelastically. A multi-layer cylindrical tube that has several different material properties at each layer is optimized within allowable stress and temperature range when mechanical and thermal loads are applied simultaneously. When thermal loads are applied to a multi-layer tube, stress phenomena become complicated due to each layer's thermal expansion and the layer thicknesses. Factors like temperature; stress; and material thermal thicknesses of each tube layer are very difficult undertaking. To analyze these problems using an efficient and precise method, the optimization theories are adopted to perform thermoelastic finite element analysis.

  • PDF

Experimental Study on the Inelastic Behavior of Single-layer Latticed Dome with New Connection (새로운 접합상세를 가진 단층 래티스 돔의 비탄성 거동에 관한 실험연구)

  • Kim, Myeong Han;Oh, Myoung Ho;Jung, Seong Yeol;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • This study discusses the inelastic behavior of single-layer latticed dome, which consists of a tubular truss member and newly proposed joint sections, through a loading test on a scaled-down structure. The loading test was performed under displacement control conditions, using loading transfer system for the same value of point loads on all joints. The maximum applied load was nearly 1.6 times of the design load, and structural failure occurred after exceeding the compressive yielding in some members. Structural displacement was maintained up to the limit of the oil jack. The behavior of the latticed dome from the loading test was analyzed according to the order of loading steps.

Dynamic Analysis of Elastic Catenary Cable Subjected to Current (조류 하중을 받는 탄성 현수선 케이블의 동적 해석)

  • 백인열;장승필;윤종윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.95-104
    • /
    • 1998
  • The dynamic behavior of the marine cable is essentially nonlinear and dominated by geometric nonlinearity. Furthermore, fluid drag force makes the problem more complex and difficult. Therefore, it has certain limitations to obtain the dynamic behavior of the marine cable by analytical method. The purpose of this paper is to apply the elastic catenary cable element to the problem of under water cable including the hydrodynamic effects of fluids. The static and dynamic formulations for the three-dimensional elastic catenary coble under water effects are derived and the finite element analysis procedures are presented. In the analysis, the hydrodynamic forces are modeled by modified Morison equation. A comparison of the results obtained using present method with previously published results showed the validity of present method. The dynamic behavior of the marine cable subjected to current is investigated using present method and it can be illustrated that the dynamic behavior of the marine cable subjected to current varies with the incident angle of the current and inclined angle of the cable.

  • PDF

Finite Element Analysis of Mechanical Ablation by Domain/Boundary Decomposition Method (영역/경계 분할법을 이용한 기계적 삭마의 유한요소 해석)

  • Kim, Jong-Il;Kim, Sung-Jun;Shin, Eui-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.68-71
    • /
    • 2010
  • 극심한 고온 및 고압 환경에 노출되기 쉬운 항공우주 구조물에서 발생하는 기계적 삭마 현상을 해석하기 위하여 영역/경계 분할법을 적용한 삭마 해석 모델을 제안하였다. 영역 및 경계는 상변화 현상에 의한 비선형 거동을 하는 삭마 부영역과 선형 거동을 하는 선형 열탄성 부영역, 공유면, 경계 공유면으로 분할하였다. 삭마 재료 내부의 열분해 반응은 엔탈피 방법을 이용하였으며, 표면 침식 반응은 공기역학적 전단 응력과 삭마 재료의 전단 강도를 기반으로 매칭 기법을 이용하였다. 화학적 및 열적 삭마는 고려하지 않았으며, 간단한 수치 해석을 통해서 기본적인 기계적 삭마 특성을 분석하였다.

  • PDF