• Title/Summary/Keyword: 열처리 시간

Search Result 1,521, Processing Time 0.033 seconds

Whitening and Antioxidant Activities of Essential Oils from Cryptomeria japonica and Chamaecyparis obtusa (삼나무와 편백나무 정유의 미백 및 항산화 효능 평가)

  • Kim, Seon-Hong;Lee, Su-Yeon;Hong, Chang-Young;Gwak, Ki-Seob;Yeo, Hwan-Myeong;Lee, Jun-Jae;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.291-302
    • /
    • 2011
  • The study was to investigate whitening and antioxidation effects by determining the tyrosinase inhibition activity, DPPH radical scavenging and superoxide dismutase like activity of essential oils from Cryptomeria japonica and Chamaecyparis obtusa. The aim of the present study was to suggest preliminary data for research whitening and anti-oxidant effects material of C. japonica and C. obtusa essential oils and confirm supplementary worth of natural volatile organic compounds (nVOCs). Essential oils of C. japonica and C. obtusa leaves were extracted by steam distillation method of clevenger type, and nVOCs were extracted by high-temperature reactor for utilizing nVOCs condensates released during drying of C. japonica and C. obtusa at 80, 100, and $120^{\circ}C$ temperature conditions, respectively. In the activity of whitening and antioxidation, C. japonica oil was more effective than C. obtusa oil. nVOCs of C. japonica and C. obtusa showed highly activity of tyrosinase inhibitory at higher temperature. Antioxidation activity only shown on nVOCs of C. japonica produced at $120^{\circ}C$.

Study on Filler Effects of High Temperature Glass Sealant (고온용 유리 봉합재의 filler 첨가효과)

  • 손용배;김상우;김민호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • The effects of glass composition on the wettability and reactivity with $ZrO_2$substrate was evaluated and fabrication variables and glass compositions was investigated. Various glass compositions was investigated. Alkaline earth silicate glass show good wettability and lower viscosity and crystallization of glass could be prevented by $B_2O_3$.The sealant glass begin to wet on $ZrO_2$substrate below $900^{\circ}C$ and porosity occurred in various glass compositions, the crystallization and porosity in the glass could be prevented by the addition of flux into glass composition. But flowability and reactivity of glass with $ZrO_2$substrate was enhanced. Processing variables should be optimized to reduce the porosity by enhancing the sintering of glass powder. Many silicate glasses were investigated for the applications of high temperature sealants. Wetting and bonding of glass was good enough to seal together between $ZrO_2$and other ceramic components of SOFC. But porosity and reaction layer were occurred in the sealant glass. It will be possible to produce glass sealant without porosity and reaction layer at the interface by optimization of processing variable and modify the glass compositions. In present study, wettability of glass-filler composite was investigated. The porosity, shape of filler and interfacial reactions of sealant glass with fillers were examined.

  • PDF

Resistive Switching Characteristic of Direct-patternable Amorphous TiOx Film by Photochemical Metal-organic Deposition (광화학증착법에 의한 직접패턴 비정질 TiOx 박막의 제조 및 저항변화 특성)

  • Hwang, Yun-Kyeong;Lee, Woo-Young;Lee, Se-Jin;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • This study demonstrates direct-patternable amorphous TiOx resistive switching (RS) device and the fabrication method using photochemical metal-organic deposition (PMOD). For making photosensitive stock solutions, Ti(IV) 2-ethylhexanoate was used as starting precursor. Photochemical reaction by UV exposure was observed and analyzed by Fourier transform infrared spectroscopy and the reaction was completed within 10 minutes. Uniformly formed 20 nm thick amorphous TiOx film was confirmed by atomic force microscopy. Amorphous TiOx RS device, formed as 6 × 6 ㎛ square on 4 ㎛ width electrode, showed forming-less RS behavior in ±4 V and on/off ratio ≈ 20 at 0.1 V. This result shows PMOD process could be applied for low temperature processed ReRAM device and/or low cost, flexible memory device.

Electrical conductivity of olivine type LiFe0.965Cr0.03B0.005PO4 and LiFe0.965Cr0.03Al0.005PO4 powders (올리빈형 LiFe0.965Cr0.03B0.005PO4 and LiFe0.965Cr0.03Al0.005PO4 분말의 전기전도도)

  • Kim, Chang-Sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.141-146
    • /
    • 2010
  • $LiFePO_4$ doped with Cr showed improved electrochemical properties as a cathode material of lithium-ion batteries compared to the undoped. The improvement was thought that the doping would raise the electronic conductivity of the compounds. The electrical conductivity of $LiFe_{0.965}Cr_{0.03}B_{0.005}PO_4$ and $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ powder was measured in the temperature range from 30 to $80^{\circ}C$. The doped powders were synthesized via mechanochemical milling and subsequent heat treatment at 675~$750^{\circ}C$ for 5~10h. The doping enhanced grain growth and electrical conductivity. The electrical conductivity of the $LiFe_{0.965}Cr_{0.03}Al_{0.005}PO_4$ powder at $30^{\circ}C$ was $1{\times}10^{-8}S/cm$, which was higher two orders of magnitude than that of the undoped.

투명 면상 발열체 응용을 위한 하이브리드 스퍼터 ITO / Ag / ITO 박막의 물성평가

  • Kim, Jae-Yeon;Park, So-Yun;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.252-252
    • /
    • 2016
  • 최근 학계나 산업계에서 indium tin oxide (ITO)의 높은 전기 전도도 및 광투과율을 이용하여 줄 발열을 기초로 하는 투명 면상 발열체에 대한 연구가 활발히 진행 되고 있다. 하지만 단일 ITO 박막으로 제작한 투명 면상 발열체는 온도가 상승함에 따라 균일하게 발열 되지 않으며, 글라스의 곡면 부분에서 유연성이 부족하여 크랙이 발생하는 다양한 문제점들을 가지고 있다. 이를 해결하기 위해 ITO의 결정화 온도 $160^{\circ}C$ 이상의 고온공정 또는 증착 후 열처리가 필요 하는 추가적인 공정이 필요하다. 따라서 본 연구에서는 단일 ITO 박막의 단점을 개선하는 ITO/Ag/ITO 하이브리드 구조의 투명 면상 발열체를 제작하여 전기적, 광학적 특성을 비교하고 발열량, 온도 균일성, 발열 유지 안정도를 조사하였다. 본 연구에서는 $50{\times}50mm$ 크기의 non-alkali glass (Corning E-2000) 기판 상에 마그네트론 스퍼터링 공정으로 상온에서 ITO/Ag/ITO 박막을 연속적으로 증착 하여 다층구조의 하이브리드 형 투명 면상 발열체를 제조하였다. 박막 증착 파워는 DC (Ag) power 100 W, RF (ITO) power 200 W로 하였으며 ITO박막두께는 40 nm로 고정 시키고 Ag박막 두께는 10 ~ 20 nm로 변화를 주었다. 증착원은 3인치 ITO 단일 타깃(SnO2, 10 wt.%)과 Ag 금속 타깃 (순도 99.99%)을 사용하였으며, 고순도 Ar을 이용하여 방전하였으며 총 주입량은 20 sccm, working pressure는 1.0 Pa을 유지하였다. 증착전 타깃 표면의 불순물 제거와 방전의 안정성을 유지하기 위해 10분간 pre-sputtering을 진행하고 증착하였다. 증착한 박막의 전기적, 광학적 특성은 각각 Hall-effect measurements system (ECOPIA, HMS3000), UV-Vis spectrophotometer (UV-1800, SHIMADZU)으로 측정하였으며, 하이브리드 표면의 구조 및 형상은 field emission-scanning electron microscopy (FE-SEM, Hitachi S-4800)으로 관찰하였다. 또한 투명 면상 발열체의 성능은 0.5 ~ 3 V/cm의 다양한 전압을 power supply (Keithly 2400, USA)를 통해서 시편 양 끝단에 인가한 후 시간에 따른 투명면상 발열체의 표면 온도변화를 infrared thermal imager (IR camera, Nikon)를 이용하여 관찰하였다. 하이브리드 구조를 가진 ITO박막의 두께는 40 nm로 고정 시키고 Ag박막의 두께는 10, 15, 20 nm로 변화를 주었다. 이들 박막의 면저항 값은 각각 5.3, 3.2, $2.1{\Omega}/{\Box}$였으며, 투과도는 각각 86.9, 81.7, 66.5 %였다. 이에 비해 두께 95 nm의 단일 ITO박막의 면저항 값은 $59.5{\Omega}/{\Box}$였으며, 투과도는 89.1 %였다. 하이브리드 구조의 전기적특성은 금속층의 두께가 증가할수록 캐리어 농도 값이 증가함에 따라 비저항 값이 감소되어 면저항 값도 감소된 것이며, 금속 삽입층의 전도특성이 비저항에 큰 영향을 주고 있음을 보여준다. 하지만 금속 층의 두께가 증가할수록 Ag층이 연속적인 막을 형성하여 반사율이 증가함에 따라 투과도가 감소하였다. 따라서 하이브리드 구조를 가진 투명 면상 발열체에 금속 삽입층의 두께 조절은 매우 중요한 인자임을 확인 할 수 있었다. 또한 발열성능을 평가 하기 위해 시편 양 끝단에 3 V전압을 인가한 결과, 금속 삽입층의 두께가 10 nm에서 5 nm씩 증가한 하이브리드 구조를 가진 투명면상 발열체의 최고 온도는 각각 98, 150, $167^{\circ}C$ 였으며, 단일 ITO의 최고 온도는 $32^{\circ}C$였다. 이 것은 동일한 두께 (95 nm)의 단일 ITO 박막과 비교하여 면저항이 낮은 하이브리드 박막의 발열량은 약 $120^{\circ}C$로 발열효율이 매우 우수한 것을 확인 할 수 있었다.

  • PDF

Electrochemical Characteristics of Supercapacitor Electrode Using MnO2 Electrodeposited Carbon Nanofiber Mats from Lignin-g-PAN Copolymer (이산화망간 전기증착 리그닌 기반 탄소나노섬유 매트를 이용한 슈퍼캐퍼시터용 전극소재의 전기·화학적 특성)

  • Kim, Seok Ju;Youe, Won-Jae;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.750-759
    • /
    • 2016
  • The $MnO_2$ electrodeposited on the surface of the carbon nanofiber mats ($MnO_2$-LCNFM) were prepared from electrospun lignin-g-PAN copolymer via heat treatments and subsequent $MnO_2$ electrodeposition method. The resulting $MnO_2$-LCNFM was evaluateed for its potential use in a supercapicitor electrode. The increase of $MnO_2$ electric deposition time was revealed to increase diameter of carbon nanofibers as well as $MnO_2$ content on the surface of carbon nanofiber mats as confirmed by scanning electon microscope (SEM) analysis. The electrochemical properties of $MnO_2$-LCNFM electrodes are evaluated through cyclic voltammetry test. It was shown that $MnO_2$-LCNFM electrode exhibited good electrochemical performance with specific capacitance of $168.0mF{\cdot}cm^{-2}$. The $MnO_2$-LCNFM supercapacitor successfully fabricated using the gel electrolyte ($H_3PO_4$/Polyvinyl alcohol) showed to have the capacitance efficiency of ~90%, and stable behavior during 1,000 charging/discharging cycles.

Reaction Characterization of Y2Ba1CU1O5 Oxides by Solid State Reaction Method and Pyrophoric Synthesis Method (고상반응법과 발화합성법에 의한 Y2Ba1CU1O5 산화물의 반응특성)

  • Park, Jeong-Shik
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.772-777
    • /
    • 1999
  • $Y_2Ba_1Cu_1O_5(Y211)$ powders were prepared by pyrophoric synthesis method and by solid state reaction method using $Y_2O_3(99.9%)$, $BaCO_3(99.9%)$, and CuO(99.9%) powders in both of these processes. The phase formation and reaction kinetics of $Y_2Ba_1Cu_1O_5$ powders have been studied using X-ray diffraction analysis(XRD) of samples at various heat treatment temperatures and reaction time. The reaction characterization suggested that the phase formation rate is mainly controlled by the particle size of Y211 powders. The activation energy(${\Delta}E_a$) of Y211 phase formation in this pyrophoric synthesis method was found to be 136.42 kJ/mol compared with 149.46 kJ/mol for that of solid state reaction method. These results data showed that the pyrophoric synthesis method is kineticaly more efficient than the solid state reaction method in this $Y_2Ba_1Cu_1O_5$ system.

  • PDF

Computationally Efficient ion-Splitting Method for Monte Carlo ion Implantation Simulation for the Analysis of ULSI CMOS Characteristics (ULSI급 CMOS 소자 특성 분석을 위한 몬테 카를로 이온 주입 공정 시뮬레이션시의 효율적인 가상 이온 발생법)

  • Son, Myeong-Sik;Lee, Jin-Gu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.771-780
    • /
    • 2001
  • It is indispensable to use the process and device simulation tool in order to analyze accurately the electrical characteristics of ULSI CMOS devices, in addition to developing and manufacturing those devices. The 3D Monte Carlo (MC) simulation result is not efficient for large-area application because of the lack of simulation particles. In this paper is reported a new efficient simulation strategy for 3D MC ion implantation into large-area application using the 3D MC code of TRICSI(TRansport Ions into Crystal Silicon). The strategy is related to our newly proposed split-trajectory method and ion-splitting method(ion-shadowing approach) for 3D large-area application in order to increase the simulation ions, not to sacrifice the simulation accuracy for defects and implanted ions. In addition to our proposed methods, we have developed the cell based 3D interpolation algorithm to feed the 3D MC simulation result into the device simulator and not to diverge the solution of continuous diffusion equations for diffusion and RTA(rapid thermal annealing) after ion implantation. We found that our proposed simulation strategy is very computationally efficient. The increased number of simulation ions is about more than 10 times and the increase of simulation time is not twice compared to the split-trajectory method only.

  • PDF

Degradation Evaluation of High Pressure Reactor Vessel in field Using Electrical Resistivity Method (전기비저항법을 이용한 고압반응기 열화도 현장평가)

  • Park, Jong-Seo;Baek, Un-Bong;Nahm, Seung-Hoon;Han, Sang-In
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.377-383
    • /
    • 2005
  • Because explosive fluid is used at high temperature or under high pressure in petrochemistry and refined oil equipment, the interest about safety of equipments is intensive. Specially, the safety of high pressure reactor vessel is required among them. The material selected in this study is 2.25Cr-1Mo steel that is widely used for high pressure reactor vessel material of petrochemical plant. Eight kinds of artificially aged specimens were prepared by differing from aging periods under three different temperatures. The material was iso-thermally heat treated at higher temperatures than $391^{\circ}C$ that is the operating temperature of high pressure reactor vessel. Vickers hardness properties and electrical resistivity properties about artificially aged material as well as un-aged material were measured, and master curves were made out from the correlation with larson-Miller parameter. And electrical resistivity properties as well as Victors hardness properties measured at high pressure reactor vessel of the field were compared with master curves made out in a laboratory. Degradation evaluation possibility in the field of high pressure reactor vessel by using electrical resistivity method was examined. Electrical resistivity property measured in the field is similar with that of artificially aged material in similar aging level.

Power Generating Characteristics of Anode-Supported SOFC fabricated by Uni-Axial Pressing and Screen Printing (일축가압/스크린인쇄 공정에 의해 제조된 음극지지형 SOFC의 출력특성)

  • 정화영;노태욱;김주선;이해원;고행진;이기춘;이종호
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.6
    • /
    • pp.456-463
    • /
    • 2004
  • To enhance the performance of anode-supported SOFC, single cell fabrication procedure was changed for better and resulting power generating characteristics of single cell were investigated. Liquid condensation process was employed for the granulation of NiO/YSZ powder mixture and the produced powder granules were compacted into anode green substrate by uni-axial pressing. YSZ electrolyte was printed on green substrate via screen-printing method and co-fired at 1400$^{\circ}C$ for 3 h. LSM/YSZ composite cathode of which the composition and heat treatment condition was adjusted to minimize the polarization#resistance with AC-impedance spectroscopy, was screen printed. The final single cell size from this multi-step procedure was 5${\times}$5 $\textrm{cm}^2$ and 10${\times}$10 $\textrm{cm}^2$. The maximum power densities of 5${\times}$5 and 10${\times}$10 single cells were about 0.45 W/$\textrm{cm}^2$ and 0.22 W/$\textrm{cm}^2$ at 800$^{\circ}C$, which are two times superior than those from single cells fabricated by the conventional process in previous our work.