• Title/Summary/Keyword: 열중합

Search Result 55, Processing Time 0.032 seconds

THERMAL POLYMERIZATION OF 2-HYDROXYETHYL METHACRYLATE WITH PHENYLSILANS (PHENYLSILANS와 2-HYDROXYETHYL METHACRYLATE의 열중합)

  • Sung, A Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.87-90
    • /
    • 2000
  • Poly(HEMA)s have been used as the optometric material for the preparation of soft contact lens. The bulk thermal polymerization of 2-hydroxyethyl methacrylate (HEMA) with various hydrosilanes such as $phSiH_3$, $phMeSiH_2$, and $ph2SiH_2$ were performed to produce poly(HEMA)s containing phenylsilyl end moeity. It was found for thermal polymerization that while the polymerization yield and polymer molcular weights decreased as the relative phenylsilane concentration increases, the TGA residue yields and the relative intensities of SiH IR stretching bands increased as the relative hydrosilane concentration increases over HEMA. The polymerization yield, molecular weight, and TGA residue for the thermal polymerization were higher than those for the photo polymerization. Thus, the hydrosilanes significantly influence on the polymerization as both chain-initiation and chain-transfer agents.

  • PDF

Surface Hydrophilization of PVDF Membrane by Thermal Polymerization Lamination Process (열중합 Lamination 공정에 의한 PVDF 분리막의 표면 친수화)

  • Lee, Se-Min;Byun, Young-Jin;Kim, Jin-Ho;Kim, Sung Soo
    • Membrane Journal
    • /
    • v.23 no.3
    • /
    • pp.220-225
    • /
    • 2013
  • Hydrophilic monomers were polymerized for lamination on polyvinylidene fluoride (PVDF) membrane surface for hydrophilization of the membranes. Hydrophilization reduced the contact angle from $95^{\circ}$ to $55^{\circ}$ and enhanced the water flux by 10 times while it reduced the bovine serum albumin (BSA) adsorption amount to 1/4 level. Thermal polymerization process was optimized by examining several operation parameters. Dimethyl oxobuthyl acrylamide (DOAA) showed the best effect due to its better hydrophilicity than others. Increase of amount of monomer enhanced the performance until the optimum concentration of 30 wt%, beyond which excess amount of monomer resulted in homopolymerization to deteriorate the performance. Azobis (isobutyronitrile)(AIBN) initiator has greater activation temperature range than benzoyl peroxide (BPO) and it showed better hydrophilation performance. Two stage lamination process, application of initiator followed by monomer addition, was more effective than one stage process, addition of initiator and monomer at once, which still reduced the contact angle but also reduced the water flux by pore blocking phenomena.

Comparison of flexural strength according to thickness between CAD/CAM denture base resins and conventional denture base resins (CAD/CAM 의치상 레진과 열중합 의치상 레진의 두께에 따른 굴곡 강도 비교)

  • Lee, Dong-Hyung;Lee, Joon-Seok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.183-195
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the flexural strength of CAD/CAM denture base resins with conventional denture base resins based on their thicknesses. Materials and Methods: For the conventional denture base resins, Lucitone 199® (C-LC) was used. DIOnavi - Denture (P-DO) and DENTCA Denture Base II (P-DC) were taken for the 3D printing denture base resins. For the prepolymerized PMMA resins, Vipi Block Gum (M-VP) and M-IVoBase® CAD (M-IV) were used. The final dimensions of the specimens were 65.0 mm x 12.7 mm x 1.6 mm / 2.0 mm / 2.5 mm. The 3-point bend test was implemented to measure the flexural strength and flexural modulus. Microscopic evaluation of surface of fractured specimen was conducted by using a scanning electron microscope (SEM). After testing the normality of the data, one-way ANOVA was adopted to evaluate the differences among sample groups with a significance level of P = 0.05. The Tukey HSD test was performed for post hoc analysis. Results: Under the same thicknesses, there are significant differences in flexural strength between CAD/CAM denture base resins and conventional denture base resins except for P-DO and C-LC. M-VP showed higher flexural strength than conventional denture base resins, P-DC and M-IV displayed lower flexural strength than conventional denture base resins. Flexural modulus was highest in M-VP, followed by C-LC, P-DO, P-DC, M-IV, significant differences were found between all materials. In the comparison of flexural strength according to thickness, flexural strength of 2.5 mm was significantly higher than that of 1.6 mm in C-LC. Flexural strength of 2.5 mm and 2.0 mm was significantly higher than that of 1.6 mm in P-DC and M-VP. In M-IV, as the thickness increases, significant increase in flexural strength appeared. SEM analysis illustrates different fracture surfaces of the specimens. Conclusion: The flexural strength of different CAD/CAM denture base resins used in this study varied according to the composition and properties of each material. The flexural strength of CAD/CAM denture base resins was higher than the standard suggested by ISO 20795-1:2013 at a thickness of 1.6 mm or more though the thickness decreased. However, for clinical use of dentures with lower thickness, further researches should be done regarding other properties at lower thickness of denture base resins.

Effect of Fiber Type and Combination on the Reinforcement of Heat Polymerized Denture Base Resin (섬유의 종류와 조합이 열중합 의치상 레진의 강화에 미치는 영향)

  • Yu, Sang-Hui;Kim, Young-Im
    • Journal of dental hygiene science
    • /
    • v.10 no.6
    • /
    • pp.445-450
    • /
    • 2010
  • The aim of this study was to evaluate the effect according to the fiber type and combination on the reinforcement of heat-polymerized denture base resin. The heat-polymerized resin(Vertex RS, Dentimax, Netherlands) was used in this study. Glass fiber(GL; ER 270FW, Hankuk Fiber Glass, Korea), polyaromatic polyamide fiber(PA; aramid; Kevlar-49, Dupont, U.S.A.) and ultra high molecular weight polyethylene fiber(PE, polyethylene; P.E, Dong Yang Rope, Korea) were used to reinforce the denture base resin specimens. The final size of test specimen was $64mm{\times}10mm{\times}3.3mm$. The specimens of each group were stored in distilled water at $37^{\circ}C$ for 50 hours before measurement. The flexural strength and flexural modulus were measured by an universal testing machine(Z020, Zwick, Germany) at a crosshead speed of 5 mm/min in a three-point bending mode. In this study, all fibers showed reinforcing effects on denture base resin(p<0.05). In terms of flexural strength and flexural modulus, glass fiber 5.3 vol.% showed most effective reinforcing effect on heat polymerized denture base resin. For flexural modulus, PA/GL was the highest in denture base resin specimen for hybrid FRC using two combination (p<0.05). Glass fiber 5.3 vol.% and PA/GL are considered to be applied effectively in reinforcing the heat polymerized denture base resin.

Preparation of Poly(propylene) Membrane Supported Gel Electrolyte Membranes for Rechargeable Lithium Ion Batteries through Thermal Polymerization of Di(ethylene glycol) Dimethacrylate (Di(ethylene glycol) Dimethacrylate의 열중합에 의한 Poly(propylene) 분리막으로 지지한 리튬이온 이차전지의 겔 전해질막 제조)

  • Yun, Mi-Hye;Kwon, So-Young;Jung, Yoo-Young;Cho, Doo-Hyun;Koo, Ja-Kyung
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.259-266
    • /
    • 2010
  • Porous poly(propylene) supported gel polymer electrolytes (GPE) were synthesized by thermal polymerization of DEGDMA [Di(ethylene glycol) dimethacrylate] in electrolyte solutions (1 M solution of $LiPF_6$ in EC/DEC 1 : 1 mixture) at $70^{\circ}C$. AC impedance spectroscopy and cyclic voltammetry were used to evaluate its ionic conductivity and electrochemical stability window of the GPE membranes. Lithium ion battery (LIB) cells were also fabricated with $LiNi_{0.8}Co_{0.2}O_2$/graphite and GPE membranes via thermal polymerization process. Through the thermal polymerization, self sustaining GPE membranes with sufficient ionic conductivities (over $10^{-3}\;S/cm$) and electrochemical stabilities. The LIB cell with 5% monomer showed the best rate-capability and cycleability.

The Application of the Pseudo Molecular Complex to Thermal Polymerization (Ⅰ). Proposal of A New Initiation Mechanism (의사분자 착물의 응용 (제1보). 열중합 개시기구 제안)

  • Byung Kack Park
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.447-452
    • /
    • 1974
  • A mechanistic possibility for the initiation of the thermal polymerization reactions are envisaged theoretically. As result of the considerations, it is assumed that the thermal polymerization reactions take place via the pseudo molecular complex which has been supposed to be an intermediate in the transition state of Diels-Alder reactions.

  • PDF

The study on the shear bond strength of resin and porcelain to Titanium (티타늄에 대한 레진과 도재의 결합 강도에 관한 연구)

  • Park, Ji-Man;Kim, Yeong-Soon;Jun, Sul-Gi;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Statement of problem: Recently, titanium has become popular as superstructure material in implant dentistry because titanium superstructure can be easily milled by means of computer-aided design and manufacture (CAD/CAM) technique. But retention form such as nail head or bead cannot be cut as a result of technical limitation of CAD/CAM milling and bond strength between titanium and porcelain is not as strong as that of conventional gold or metal alloy. Purpose: The objective of this study was to evaluate the shear bond strength of three different materials: heat curing resin, composite resin, porcelain which were bonded to grade II commercially pure Titanium (CP-Ti). Material and methods: Thirty seven CP-Ti discs with 9 mm diameter, 10 mm height were divided into three groups and were bonded with heat curing resin (Lucitone 199), indirect composite resin (Sinfony), and porcelain (Triceram) which were mounted in a former with 7 mm diameter and 1 mm height. Samples were thermocycled for 1000 cycles at between $5-55^{\circ}C$. Shear bond strength (MPa) was measured with Instron Universal Testing Machine with cross head speed of 1 mm/min. The failure pattern was observed at the fractured surface and divided into adhesive, cohesive, and combination failure. The data were analyzed by one-way ANOVA and Scheffe's multiple range test (${\alpha}=0.05$). Results: Lucitone 199 ($17.82{\pm}5.13\;MPa$) showed the highest shear bond strength, followed by Triceram ($12.97{\pm}2.11\;MPa$), and Sinfony ($6.00{\pm}1.31\;MPa$). Most of the failure patterns in Lucitone 199 and Sinfony group were adhesive failure, whereas those in Triceram group were combination failure. Conclusion: Heat curing resin formed the strongest bond to titanium which is used as a CAD/CAM milling block. But the bond strength is still low compared with the bond utilizing mechanical interlocking and there are many adhesive failures which suggest that more studies to enhance bond strength are needed.

A Study on the Preparation of Wood-Plastic Combinations(III) Preparation of Wood-Plastic Combinations by Thermal Curing Method

  • Kim, Jaerok;Lee, Kyung-Hee;Pyun, Hyung-Chick
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.301-305
    • /
    • 1972
  • The polymerization rates of monomer or monomer mixture impregnated with catalyst into domestic soft woods such as pinus densiflora, pinus rigida and poplus deltoides e. t. c. were measured. The results were compared with those obtained by radiation curing method and the following conclusions were derived ; (1) Pinus densiflora and pinus rigida are superior to the poplus deltoides, and methyl methacrylate(M. M. A. ) is more effective than other monomers as far as the polymerization rates are only taken into account. (2) The polymerization rate of vinyl acetate is generally slow. And the polymerization rate of the monomer is the slowest in case of being impregnated into poplus deltoides. However, the polymerization rate of the comonomer composed of vinylacetate and M. M. A. is the fastest among the other monomers or monomer mixtures in woods regardless of the curing method. (3) The general trend of polymerization of monomer in wood is similar to that of monomers themselves in both curing methods if the woods contain not much resin.

  • PDF

Effects of Treatment of Silane Coupling Agent in MPS Concentration on the Shear Bond Strength between Self Curing Resins and Heat Curing Resin (Silane coupling agent인 MPS 농도별처리에 따른 열중합 레진과 자가중합 레진 간의 전단결합강도)

  • Choi, Esther;Kwon, Eun-Ja
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.344-351
    • /
    • 2015
  • The purpose of this study was to evaluate the effect of the surface treatment of widely used in dental of silane coupling agent concentration on the shear bond strength of denture base resin and self curing resins. Denture base resin surface was treated with silane coupling agent concentration, after self curing resins were injected shear bond strength was measured. The results of silane coupling agent(MPS) concentration on the shear bond strength of Vertex self curing resin showed that the value of 5%, 7% groups were higher than that of other group(P<0.05). Silane coupling agent concentration on the shear bond strength of Kooliner resin showed that the value of 5% was highest(P<0.05). Therefore, we could conclude 5% MPS to strengthen effectively the shear bonding property of denture base resin and self curing resins of this study.