• Title/Summary/Keyword: 열중량 분석

Search Result 347, Processing Time 0.027 seconds

Metatitanic Acid를 광전극으로 적용한 페로브스카이트 태양전지

  • Pyo, Se-Yeong;Jeong, Seung-Gyu;Sin, Hyeon-Ho;Jeong, Hyeon-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.471.1-471.1
    • /
    • 2014
  • 염료감응형 태양전지(DSSC)는 다양한 태양전지 중, 가장 환경친화적이고, 생산단가도 낮을 뿐만 아니라 다양한 색상과 투광성을 확보할 수 있어 많은 연구가 진행되어왔다. 하지만 액체전해질을 사용하는 기존 염료감응형 태양전지는 높은 휘발성과 열 팽창 수축에 따른 전해질 누액의 문제점으로 인하여 최근에는 고체전해질을 이용한 염료감응형 태양전지의 개발이 활발히 이루어지고 있다. 또한 기존 염료보다 높은 흡광계수와 넓은 흡수스펙트럼을 지닌 페로브스카이트가 개발되어 현재 많은 관심이 주목되고 있다. 본 연구에서는 $TiO_2$ 제조상의 중간생성물인 Metatitanic acid (MTA)를 이용하여 광전극을 형성하고 열처리 온도에 따른 나노입자의 소성거동평가을 평가하였고 시차열중량 분석, 결정상 확인을 하고 염료감응 태양전지에 적용하였다. MTA 나노입자를 Field Emission Transmission Electron Microscopy (FE-TEM), Barrett-Joyner-Halenda (BJH pore size distribution)과 Brunauer-Emmet-Teller (BET) 분석을 통해 소성거동을 평가하고, Thermogravimetry and differential thermal analysis (TG-DTA)를 통해 열중량 측정을 하였으며, X-ray Diffraction (XRD) 분석을 통해 결정상을 확인하였다. 또한 Fourier-transform infrared (FT-IR) spectroscopy를 통해 MTA 나노입자의 표면분석을 하였다. 형성된 MTA 광전극을 페로브스카이트 염료에 적용하여 5%의 효율을 달성하였다.

  • PDF

Explosion Characteristics of Bituminous Coal Dusts in Cement Manufacturing Process (시멘트 제조공정에서 유연탄 분진의 폭발특성)

  • Kim, Won-Hwai;Lee, Seung-Chul;Seung, Sam-Sun;Kim, Jin-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.257-263
    • /
    • 2008
  • We have examined explosion characteristics of bituminous coal dusts in cement manufacturing process. In order to find the thermal properties, we investigated weight loss and ignition temperature of coal materials using TGA and DSC. Also specific surface area of dust was investigated. Dust explosion experiments with Hartman's dust explosion apparatus have been conducted by varying concentration and size of coal dust for explosion probability and lower limit explosion concentration. According to the results for thermal properties, there is a little change by dust size. However, the specific surface area of dust is increased by decreasing dust size. The explosion test results show that small size and increasing concentration of dusts make dust explosion easier. And we find that the lower limit explosion concentration of bituminous coal is $0.3mg/cm^3$ and the probability is 100% on $0.9mg/cm^3$ in 170/200 mesh used in cement manufacturing process.

Correlation Between Surface Properties of Fuel and Performance of Direct Carbon Fuel Cell by Acid Treatment (석탄 산처리에 따른 연료의 표면 물성 변화와 직접탄소 이용 연료전지 성능 간의 상관관계 분석분석)

  • Kim, Dong Heon;Eom, Seong Yong;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.697-704
    • /
    • 2016
  • Coal modified by acid treatment was investigated to analyze the correlation between the cell performance and electrochemical parameters in a direct carbon fuel cell (DCFC). The fuels were subjected to thermogravimetry analysis, gas adsorption test, and X-ray photoelectron spectroscopy to investigate the fuel properties and surface characteristics. After the treatment of raw coal, the thermal reactivity of the treated fuels increased, and the specific surface area decreased, though the mean pore diameters of three fuels were similar. The coal treated by $HNO_3$ showed the highest ratio of oxygen to carbon, and also an increase in the surface oxygen groups on the fuel surface. Through comparison between the fuel surface properties and electrochemical performance, it was confirmed that the surface oxygen groups have an influence on the improvement in the DCFC performance.

A Study on the Microstrucutre Changes by carbonation in NPP Concrete (원전콘크리트의 탄산화에 의한 미세구조 변화에 관한 연구)

  • Lee, Jang-Hwa;Kim, Do-Gyeum;Kim, Ki-Beom;Lee, Ho-Jae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.400-403
    • /
    • 2011
  • 본 논문에서는 시차열중량분석법과 X-선 회절분석법을 이용한 원전콘크리트의 탄산화에 의한 열화도 평가를 진행하였으며 두 가지 정성적 분석방법을 이용한 반정량적 평가 방법을 개발하였다. 원자력발전소 건설에 사용된 동일한 콘크리트 배합을 사용한 시편을 촉진 탄산화 시험장치에 28, 56, 91, 180, 365일 기간에 걸쳐 노출시켜 탄산화를 진행하였으며 노출된 시편은 시차열중량분석법, X-선 회절분석법을 이용하여 탄산화에 따라 발생된 열화생성물의 양을 정성적으로 분석하였다. 그 결과, 탄산화로 인해 발생되는 Calcite의 양이 노출기간에 따라 점차적으로 증가되는 것이 확인되었으며, Calcite의 생성을 위해 이산화탄소와 반응하는 Portlandite의 양이 점차적으로 감소되는 것이 확인되었다. 본 논문에서는 위의 언급된 두 방법의 관계성을 통해 열화도 평가를 진행하였다.

  • PDF

Differential Scanning Calorimetric and Thermogravimetric Analysis of Silk Fibroin / poly (Vinyl pyrrolidone) (견단백질 / Poly (Vinyl pyrrolidone)의 열특성)

  • Kweon, Hae-Yong;Lee, Kwang-Gill;Yeo, Joo-Hong;Woo, Soon-Ok;Han, Sang-Mi
    • Journal of Sericultural and Entomological Science
    • /
    • v.49 no.2
    • /
    • pp.77-80
    • /
    • 2007
  • Silk fibroin/poly (vinyl pyrrolidone) conjugates were prepared and characterized through differential thermal calorimeter and thermogravimetry. The glass transition temperature (Tg) of poly (vinyl pyrrolidone) was not changed by reaction with silk fibroin. However, abnormal exothermic peak was observed at the silk fibroin/poly (vinyl pyrrolidone) conjugates. Thermogravimetric analysis showed that thermal stability of silk fibroin was relatively increased by reaction with PVP.

Evaluation of Fire-induced Damage for Shield Tunnel Linings Subjected to High Temperatures (고온에 노출된 쉴드터널 라이닝의 손상평가)

  • Lee, Chang Soo;Kim, Yong Hyok;Kim, Young Ook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The aim of this study is to evaluate fire-induced damage for shield tunnel linings. Full-scale fire test was conducted to evaluate fire-induced damage. Residual compressive strength was measured on the core samples of shield tunnel lining subjected to high temperatures. Heating temperature was predicted by XRD and TG analysis. As a result, Strength degradation of concrete with temperatures can be evaluated by residual compressive strength of core samples. In addition, residual compressive strength can be estimated by previous studies if heating temperature is exactly predicted. It is possible that heating temperature is predicted by XRD and TG analysis at $450^{\circ}C$. For more accurate prediction of heating temperature it should be performed both instrumental analysis and analytical methods with temperatures ranging from $400{\sim}600^{\circ}C$.

Study on Kinetics and Syngas Production of Sewage Sludge Gasification (하수슬러지 가스화의 kinetics 및 합성가스 생산 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.3-8
    • /
    • 2015
  • Gasification characteristics and gas produced from a sewage sludge char were analyzed by using a thermobalance reactor, which is used for a reaction kinetic analysis by measuring weight change of materials at a desired temperature. Gasification reaction rate increased with increasing temperature and steam partial pressure due to the promotion of gasification reaction. Three models of gas-solid reaction were applied to the reaction kinetics analysis and modified volumetric reaction model was an appropriated model for the steam gasification of the sewage sludge char. Apparent activation energy and pre-exponential factors were evaluated as 155.5 kJ/mol and $14,087s^{-1}atm^{-1}$, respectively. The order of reaction on steam partial pressure was 0.68. Gas analysis was performed at $900^{\circ}C$ and hydrogen concentration was highest in the gas concentrations, which increased with increasing the steam partial pressure. Hydrogen concentration increased the most and hydrogen concentration in the produced gas was 2-4 times higher than that of carbon monoxide due to the gasification and water gas shift reaction.

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash (순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.165-172
    • /
    • 2021
  • The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.

A study on the properties of polysilanes synthesized by ultrasonic methods (초음파 화학적 방법으로 합성된 폴리실란의 물성에 관한 연구)

  • Yang, Eun-Ok;Lee, Joong-Keun;Lee, Sung-Hwan;Song, Young Sang;Lee, Gyu-Hwan
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.504-511
    • /
    • 2006
  • Polysilanes with organic substituents such as methyl and phenyl were synthesized by Wurtz dechlorination-condensation reactions using ultrasonic from organochlorosilanes. The yields were compared with the results of thermal dechlorination-condensation reactions. Properties such as thermogravimetric analysis and photoreactivity were investigated for the possibility of applications.

Effects of Electrode Material on Electrochemical Conversion of Carbon Dioxide Using Molten Carbonate Electrolyte (용융탄산염 전해질에서 이산화탄소의 전기화학적 전환에 전극 재질이 미치는 영향)

  • Ju, Hong Su;Eom, Seong Yong;Kang, Ki Joong;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.727-734
    • /
    • 2017
  • The electrochemical conversion of $CO_2$ is one of the methods for reducing $CO_2$. Four materials (Ag, Ni, Pt, and Ir) were selected as the electrodes. The electrochemical conversion was performed under a cell voltage of 4.0 V at $600^{\circ}C$. The amounts of $CO_2$ reduction and carbon production were at the highest for Ag, followed by, Pt, Ni, and then Ir. The produced carbon samples were analyzed by thermogravimetric analysis and XRD. The thermogravimetric analysis results indicated that all the carbon produced at each electrode exhibited similar thermal reactivity. The XRD results showed that the crystallization of carbon was different depending on the electrode utilized. Although electrochemical conversion was the highest for the Ag electrode, a loss of material accompanied it. Therefore, for this study, the optimal electrode is Pt, taking into account reactivity and material losses.