DOI QR코드

DOI QR Code

Study on Kinetics and Syngas Production of Sewage Sludge Gasification

하수슬러지 가스화의 kinetics 및 합성가스 생산 연구

  • Received : 2014.10.21
  • Accepted : 2015.11.11
  • Published : 2015.12.30

Abstract

Gasification characteristics and gas produced from a sewage sludge char were analyzed by using a thermobalance reactor, which is used for a reaction kinetic analysis by measuring weight change of materials at a desired temperature. Gasification reaction rate increased with increasing temperature and steam partial pressure due to the promotion of gasification reaction. Three models of gas-solid reaction were applied to the reaction kinetics analysis and modified volumetric reaction model was an appropriated model for the steam gasification of the sewage sludge char. Apparent activation energy and pre-exponential factors were evaluated as 155.5 kJ/mol and $14,087s^{-1}atm^{-1}$, respectively. The order of reaction on steam partial pressure was 0.68. Gas analysis was performed at $900^{\circ}C$ and hydrogen concentration was highest in the gas concentrations, which increased with increasing the steam partial pressure. Hydrogen concentration increased the most and hydrogen concentration in the produced gas was 2-4 times higher than that of carbon monoxide due to the gasification and water gas shift reaction.

일정 온도에서 중량 변화를 통하여 가스화 반응 특성을 살펴볼 수 있는 열중량 분석기(thermobalance)를 이용하여 하수슬러지의 수증기 가스화 특성 및 발생 가스의 농도 분석을 실시하였다. 반응 온도 및 수증기의 분압이 증가할수록 가스화 반응이 촉진되어 반응 속도가 증가하는 것으로 나타났다. 반응 kinetics 해석은 기체-고체 화학반응의 세 가지 모델이 이용되었다. 이 중 하수슬러지 촤의 수증기 가스화는 modified volumetric reaction model이 반응 kinetics를 가장 잘 나타내었으며, 이 때 activation energy와 빈도 인자는 각각 155.5 kJ/mol, $14,087s^{-1}atm^{-1}$로 분석되었다. 또한, 수증기의 분압에 따른 반응 차수는 0.68이었다. 합성가스의 발생 특성을 살펴보고자 $900^{\circ}C$에서 생성 합성가스를 분석한 결과 수소의 농도가 가장 높았으며 수증기 분압이 증가할수록 생성기체의 농도 특히 수소 농도가 급격히 증가하였다. 가스화와 동시에 수성가스화 변환반응이 진행되어 생성기체의 수소 생성 농도가 일산화탄소에 비하여 2-4배 높은 값을 나타내었다.

Keywords

References

  1. Lee, H. Y., 2008: A Study on the Preparation of Lightweight Materials with Sewage Sludge Ash, Journal of the Korean Institute of Resources Recycling, 17, pp. 30-36.
  2. Ham S, A,, You, M. Y., Kim, D. K., Wang, J. P., 2011: A Study on the RDF fuel mixing with household and organic wastes, Journal of the Korean Institute of Resources Recycling, 20, pp. 52-57.
  3. Roh, S. A., Kim W. H., Yun, J. H., Min, T. J., Kwack, Y. H., Seo, Y. C., 2013: Pyrolysis and gasification-melting of automobile shredder residue, Journal of the Air & Waste Management Association, 63, pp. 1137-1147 https://doi.org/10.1080/10962247.2013.801373
  4. Yun, J. H., Kim, W. H., Keel S. I., Min, T. J., Roh, S. A., 2007: Coal Gasification with High Temperature Steam, Journal of the Korean Institute of Resources Recycling, 16, pp. 28-33.
  5. Namkung, W., Roh S. A., Guy, C., Kim, S. D., 2004: Kinetics and Combustion Characteristics of Deinking Sludge in a Thermobalance and an Internally Circulating Fluidized Bed, The Canadian Journal of Chemical Engineering, 82, pp. 939-947.
  6. Lee, J. M., Kim, Y. J., Kim, S. D., 1998: Coal-gasification Kinetics Derived from Pyrolysis in a Fluidized-bed Reactor, Energy, 23, pp. 475-488. https://doi.org/10.1016/S0360-5442(98)00011-5
  7. Fermoso, J., Rubiera, F., Chen, D., 2012: Sorption Enhanced Catalytic Steam Gasification Process: a Direct Route from Lignocellulosic Biomass to High Purity Hydrogen, Environmental Science, 5, 6358-6367.