• Title/Summary/Keyword: 열중량분석

Search Result 346, Processing Time 0.023 seconds

Structures and Properties of Semi-blown Petroleum Asphalt (세미-브로잉 공정에서 석유 아스팔트의 구조, 물성 변화)

  • Min, Kyung Eui;Jeong, Han Mo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.664-671
    • /
    • 2011
  • The vacuum residue of petroleum refinery, i.e. asphalt, was modified through a non-catalytic air blowing process to prepare the semi-blown asphalt. Changes in composition, chemical structure, and physical properties of asphalt were examined. The result from the thin layer chromatography showed that the asphaltene content in asphalt was increased by the air blowing on account of the aromatization of aliphatic hydrocarbon and condensation. These changes in molecular structure were also confirmed by $^1H-NMR$, differential scanning calorimetry, and thermogravimetry. Because of the molecular structure changes, the penetration of asphalt was decreased and the softening point and the flash point of asphalt were increased.

Evaluation of Fire-induced Damage for Shield Tunnel Linings Subjected to High Temperatures (고온에 노출된 쉴드터널 라이닝의 손상평가)

  • Lee, Chang Soo;Kim, Yong Hyok;Kim, Young Ook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • The aim of this study is to evaluate fire-induced damage for shield tunnel linings. Full-scale fire test was conducted to evaluate fire-induced damage. Residual compressive strength was measured on the core samples of shield tunnel lining subjected to high temperatures. Heating temperature was predicted by XRD and TG analysis. As a result, Strength degradation of concrete with temperatures can be evaluated by residual compressive strength of core samples. In addition, residual compressive strength can be estimated by previous studies if heating temperature is exactly predicted. It is possible that heating temperature is predicted by XRD and TG analysis at $450^{\circ}C$. For more accurate prediction of heating temperature it should be performed both instrumental analysis and analytical methods with temperatures ranging from $400{\sim}600^{\circ}C$.

Study on Kinetics and Syngas Production of Sewage Sludge Gasification (하수슬러지 가스화의 kinetics 및 합성가스 생산 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.3-8
    • /
    • 2015
  • Gasification characteristics and gas produced from a sewage sludge char were analyzed by using a thermobalance reactor, which is used for a reaction kinetic analysis by measuring weight change of materials at a desired temperature. Gasification reaction rate increased with increasing temperature and steam partial pressure due to the promotion of gasification reaction. Three models of gas-solid reaction were applied to the reaction kinetics analysis and modified volumetric reaction model was an appropriated model for the steam gasification of the sewage sludge char. Apparent activation energy and pre-exponential factors were evaluated as 155.5 kJ/mol and $14,087s^{-1}atm^{-1}$, respectively. The order of reaction on steam partial pressure was 0.68. Gas analysis was performed at $900^{\circ}C$ and hydrogen concentration was highest in the gas concentrations, which increased with increasing the steam partial pressure. Hydrogen concentration increased the most and hydrogen concentration in the produced gas was 2-4 times higher than that of carbon monoxide due to the gasification and water gas shift reaction.

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash (순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.165-172
    • /
    • 2021
  • The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.

A study on the properties of polysilanes synthesized by ultrasonic methods (초음파 화학적 방법으로 합성된 폴리실란의 물성에 관한 연구)

  • Yang, Eun-Ok;Lee, Joong-Keun;Lee, Sung-Hwan;Song, Young Sang;Lee, Gyu-Hwan
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.504-511
    • /
    • 2006
  • Polysilanes with organic substituents such as methyl and phenyl were synthesized by Wurtz dechlorination-condensation reactions using ultrasonic from organochlorosilanes. The yields were compared with the results of thermal dechlorination-condensation reactions. Properties such as thermogravimetric analysis and photoreactivity were investigated for the possibility of applications.

Effects of Electrode Material on Electrochemical Conversion of Carbon Dioxide Using Molten Carbonate Electrolyte (용융탄산염 전해질에서 이산화탄소의 전기화학적 전환에 전극 재질이 미치는 영향)

  • Ju, Hong Su;Eom, Seong Yong;Kang, Ki Joong;Choi, Gyung Min;Kim, Duck Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.727-734
    • /
    • 2017
  • The electrochemical conversion of $CO_2$ is one of the methods for reducing $CO_2$. Four materials (Ag, Ni, Pt, and Ir) were selected as the electrodes. The electrochemical conversion was performed under a cell voltage of 4.0 V at $600^{\circ}C$. The amounts of $CO_2$ reduction and carbon production were at the highest for Ag, followed by, Pt, Ni, and then Ir. The produced carbon samples were analyzed by thermogravimetric analysis and XRD. The thermogravimetric analysis results indicated that all the carbon produced at each electrode exhibited similar thermal reactivity. The XRD results showed that the crystallization of carbon was different depending on the electrode utilized. Although electrochemical conversion was the highest for the Ag electrode, a loss of material accompanied it. Therefore, for this study, the optimal electrode is Pt, taking into account reactivity and material losses.

Study on the Formulation of an Energetic Thermoplastic Propellant and its Properties(II) (고에너지 열가소성 추진제 제조 및 특성연구(II))

  • Kim, Han-cheol;Park, Eui-Yong;Jeong, Jea-Yun;Kim, Yoon-Gon;Choi, Sung-han;Kang, Tae-won;Oh, Kyeong-won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.41-46
    • /
    • 2020
  • In this study, measurement and analysis results from Differential scanning calorimetry(DSC) and Thermogravimetric analysis(TGA) on the newly developed high-energy thermoplastic elastomer(ETPE) propellant are described, followed by the previous study done under the same title as this paper [1]. The characteristics of high-energy thermoplastic propellant were also verified by conducting thermal analysis, and the LSGT, Shotgun & RQ Bomb test, was carried out as well. High energetic thermoplastic binders containing 45% of GAP(Glycidyl Azide Polymer), energetic plasticizer(DEGDN) and Oxidizer Aonium Perchlorate), RDX(reseach development explosive, cyclotrimethylenetrinitramine) were used to formulate the propellant.

Gemological Characterization of B. C. Jade (비씨 제이드의 보석학적 연구)

  • Kim, Won-Sa;Wight, Willow
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.177-182
    • /
    • 2008
  • The Gemological characteristics of B.C. jade from Cassiar Mine, British Colombia, Canada, have been investigated, using polarizing microscopy, Mohs' hardness, refractive index and density measurements, X-ray powder diffraction, X-ray fluorescence spectrometry, ICP-MS, Infrared absorption spectrometry, and DTA/TGA. The B.C. jade is deeply green (spinach peen or olive green) in color and is translucent. It shows a resinous or waxy luster. The principal mineral of the material is tremolite-actinolite solid solution and minor amount of Cr-garnet and unidentified opaque minerals are accompanied. Mohs' hardness value ($5.5{\sim}6$). refractive index (1.62), and specific gravity (3.01) are measured. It is very highly tough and shows hackly fracture. The high Fe content ($Fe_2O_3\;4.14{\sim}4.66\;wt%$) in B.C. jade is attributable to a deepening of green color of the material. The B.C. jade starts to dehydrate at v and dehydration is completed at $1000.8^{\circ}C$, transforming tremolite-actinolite solid solution to enstatite, diopside, quartz, and water in its place. This possible reaction is supported by the weight loss of B.C. jade (1.93 wt%) at $1000.8^{\circ}C$ indicated by TGA curve.

Influences to Additive Type on Carbon Nanotube metal composite (첨가제 종류에 따른 탄소나노튜브 금속복합재료 소결코팅 영향)

  • Kim, Dea-Hea;Zheng, XI-Ru;Kim, Myin-Su;Park, Chan-Woo
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.159-163
    • /
    • 2012
  • The coating of metal surface with carbon nanotubes(CNTs) has been studied for the heat transfer enhancement of the boiling and condensation of refrigerant. The multiwalled carbon nanotube/copper oxide(CuO) composite powder, which has been surface modified by dispersant and polyvinyl alcohol solution, was ultrasonically sprayed and sintered on a copper wafer. In this paper, experiments were performed to assess the characterization and comparison of the carbon nanotube before and after sinterning and the morphology changes of the CNT/CuO-coated surface by using different dispersants. The dispersants used are THF (Tetrahydrofuran), SDBS(Dodecylbenzenesulfonic acid sodium salt), SDS(Sodium dodecy sulfate). The samples were examined by scanning electron microscopy(SEM), thermogravimetric analysis(TGA), differential scanning calorimeter(DSC) and Raman spectroscopy.

Electrochemical Energy Storage of Milled Carbon Nanofiber (탄소나노섬유의 밀링에 따른 전기화학적 에너지 저장 특성)

  • Lee, Hye-Min;Jeon, Hyeon;Choi, Weon-Kyung;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.4
    • /
    • pp.527-533
    • /
    • 2011
  • CNFs had been well addressed due to numerous promising applications in science and technology. Besides the same physicochemical properties of ordinary carbon materials such as active carbons and carbon black, they exhibit specific, e.g., tubular or fibrous structures, a large surface area, high electrical conductivity stability, as well as extremely high mechanical strengh and modulus, which make them a superior material for electrochemical capacitors. In this study, CNFs were pretreated by mechanical milling with different time in mortar and pestle. The milled CNFs were used as active material of electrode whose electrochemical property was tested to find physicochemical characterization variation. CNF electrode milled for 5 min has the highest electric capacitance. XPS spectrum were employed to explore changes in functional group induced from mechanical milling. Crystal size was calculated to analyze change of peak from different milling time by XRD. The CNF milled for 5 min has the largest crystal size and the highest electric capacitance.