• Title/Summary/Keyword: 열전지

Search Result 494, Processing Time 0.025 seconds

A Study on Control of Heat Generation in Computer using Thermoelectric Cooling System (열전냉각시스템을 이용한 컴퓨터의 발열제어에 관한 연구)

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • In recent years, the amount of heat generated inside of the computer has more increased because of high performance, multi-function, miniaturization and light weight. It is necessary to control the effective heat generation to improve performance and life extension of the computer. In this study, thermoelectric cooling system was manufactured using thermoelectric module and was attached to computer in order to control the heat generated inside computer. And the temperature distributions inside computer were experimentally measured and compared with and without thermoelectric cooling system to investigate the effect of cooling system. Also, to estimate the new cooling system which can substitute for the existing computer cooling system, temperature distributions inside computer were calculated by numerical analysis when there was no cooling system and was applied only cooling system to computer.

Effect of the lubrication oil on heat transfer and pressure drop characteristics of supercritical carbon dioxide in a microfin tube (마이크로핀관내 냉동기유가 초임계 이산화탄소의 열전달과 압력강하에 미치는 영향)

  • Ku, Hak-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1440-1446
    • /
    • 2012
  • This paper presents an experimental study of heat transfer and pressure drop characteristics of supercritical carbon dioxide with PAG inside a horizontal microfin tube. Heat transfer coefficient and pressure drop gradients were measured at 10 MPa in pressure and 520 kg/$m^2s$ in mass flux with variation of PAG mass concentration from 0.06% to 2.26%. The tendencies of both heat transfer and frictional pressure drop characteristics show the same as those of pure $CO_2$ up to 0.3% in PAG mass concentration. In case of 2.26% in PAG mass concentration, measured heat transfer coefficients showed 50% lower than those of pure $CO_2$ near the pseudocritical temperature and measured frictional pressure drop gradients show 1.6 times higher in comparison with those of pure $CO_2$ at $60^{\circ}C$ in $CO_2$ bulk temperature.

Change in Engine Exhaust Characteristics Due to Automotive Waste Heat Recovery (엔진 배기 폐열회수로 인한 배기 특성 변화)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4723-4728
    • /
    • 2014
  • In this study, a thermoelectric module (TEM) and a diesel engine were modeled using 1-D commercial software AMESim, and the performance of the TEM was evaluated when the engine was operated under the NEDC driving cycle. The goal of TEM modeling was to investigate not only the waste heat recovery (WHR) rate and energy converting efficiency, but also the heat transfer rate by taking the materials characteristics into account. In addition, a diesel oxidation catalyst (DOC) was designed, and it was found that the waste heat recovery with TEM affects the activation of DOC and alters engine exhaust composition. The simulation indicated that the WHR using TEM is beneficial for decreasing the fuel consumption of vehicles, but the reduction in the exhaust temperature affects the activation of DOC, resulting in an approximately 14% increase in CO and HC emissions. Therefore, the effect of waste heat recovery on the automotive emission characteristics must be considered in the development of automotive engine WHR systems.

A Study of The Effect of Corrosion on Heat Transfer in a Heat Exchanger (열교환기에서 부식이 열전달에 미치는 영향에 관한 연구)

  • Kwon, Hyun-Min;Kwon, Jeong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.227-232
    • /
    • 2019
  • Heat pump systems based on ocean thermal energy conversion (OTEC) systems use the temperature difference between deep ocean water and surface ocean water to operate. However, they may have heat transfer degradation due to corrosion on the heat exchanger surface due to the salinity of sea water. This study presents experimental results for the heat transfer decrease of corroded metal tubes with respect to corrosion time. In order to replace high-priced titanium, electro-deposition (ED) coating was performed on aluminum tubes. Aluminum tubes with ED coating thicknesses of 10, 15, and $20{\mu}m$ were tested for double-tube heat exchangers after performing accelerated corrosion for 6, 12, and 18 weeks. The effects of the coating thickness and the corrosion time on the heat transfer degradation were investigated. From the results, the aluminum tube with an ED coating of $20{\mu}m$ thickness can be suggested as a candidate for replacing titanium tubes.

An Experimental Study on Tube-Side Heat Transfer Coefficients and Friction Factors of the Enhanced Tubes Used in Regenerators of Absorption Chillers (흡수식 냉동기의 재생기에 사용되는 전열촉진관의 관 내측 열전달계수 및 마찰계수에 대한 실험적 연구)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.716-723
    • /
    • 2016
  • Enhanced tubes are used widely in the heat exchangers of absorption chillers. In regenerators, corrugated, ribbed or floral tubes are commonly used. In this study, the tube-side heat transfer coefficients and friction factors of enhanced tubes were obtained experimentally using the Wilson Plot method. The results showed that the heat transfer coefficients and the friction factors were the largest for the corrugated tube, followed by the ribbed tube. The heat transfer coefficients and friction factors of the floral tube matched those of the smooth tube within 4%, which suggests that the heat transfer and friction characteristics of the floral tube may be accounted for properly by the hydraulic diameter. The B(e+) and g(e+) were obtained from the experimental data of the corrugated and ribbed tube. The B(e+) and g(e+) of the corrugated tube matched those of the existing correlation within 20%. The present results may be used for an assessment of the heat transfer and friction characteristics of the enhanced tubes for regenerators.

Thermophysical Properties of the Soybean Curd and Prediction of its Thermal Conductivity 2. The 'intrinsic' thermal conductivity of soybean protein and prediction of the thermal conductivity of soybean curd (두부의 전열물성 및 유효열전도도의 추정 2. 대두단상질의 고유열전도도 측정과 두부의 유효열전도도의 추정)

  • KONG Jai-Yul
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-225
    • /
    • 1982
  • Four heat conduction models were examined for defatted soy-protein curds in order to get the 'intrinsic' thermal conductivity of soy-protein. As the result of examination, the 'intrinsic', thermal conductivities of soy-protein, frozen and unfrozen states, were determined on the basis of series model to be 0.488 W/m.K and 0.300 W/m.K, respectively. By using the 'intrinsic' thermal conductivity values of soybean protein and the series model, the effective thermal conductivity of soybean curds, with and without fat, at frozen and unfrozen states, was predicted satisfactorily, The temperature dependency of the effective thermal conductivity of soybean curd was mostly observed to correlate with the thermal conductivity of water and ice.

  • PDF

Heat Flow Characteristics on Type of Heat Transfer Plate for White Smoke Reduction under Uniform Flow Condition (균일유동에서 백연저감용 전열판 형태에 대한 열유동 특성)

  • Son, Jun;Cha, Jae Min;Wang, Zhen Huan;Kwon, Young Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.591-596
    • /
    • 2016
  • Numerical analyses were performed on the heat flow characteristics of a heat transfer plate with six different shapes (basic, rectangle, triangle, wave type) to reduce the level of white smoke at a stack. In this study, to examine the heat transfer performance (heat transfer capacity, pressure drop, turbulence kinetic energy, heat transfer coefficient) on the heat transfer plates, simulations were conducted using the commercial computational fluid dynamics software, ANSYS CFX Ver.14 under uniform flow conditions. The thermal flow phenomenon in a channel with six heat transfer plates could be predicted adequately under uniform flow conditions. The heat transfer capacity, pressure drop, turbulence kinetic energy, and heat transfer coefficient were affected by the flow rate, aspect ratio and plate shape. These results provide guidelines to design an effective heat exchanger with the wave type to reduce white smoke.

Numerical Study of Forced Convection Nanofluid in Double Pipe (이중관 내부 나노유체의 강제대류에 관한 수치적 연구)

  • Lim, Yun-Seung;Choi, Hoon-Ki
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.12
    • /
    • pp.147-156
    • /
    • 2019
  • Numerical study was performed to investigate the convective heat transfer of Al2O3/water nanofluid flowing through the concentric double pipe counterflow heat exchangers. Hot fluid flowing through the inner pipe transfers its heat to cooling fluid flowing in the outer pipe. Effects of important parameters such as hot and cold volume flow rates, fluid type in the outer and inner pipes, and nanoparticles concentration on the heat transfer and flow characteristics are investigated. The results indicated that the heat transfer performance increases with increasing the hot and cold volume flow rates, as well as the particle concentrations. When both outer and inner pipes are nanofluids with 8% nanoparticle volume concentration, nanofluids showed up to 17% better heat transfer rate than basic fluids. Also, the average heat transfer coefficient of the base fluid for annulus-side improved by 31%. Approximately 20% enhancement in the heat exchanger effectiveness can be achieved with the addition of 8% alumina particles in base fluid. But, addition of nanoparticles to the base fluid enhanced friction factor by about 196%.

Fabrication of Thermoelectric Module and Analysis of its Power Generation Characteristics (열전발전소자 제작 및 발전특성 분석)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.90-97
    • /
    • 2021
  • In this study, a Bi2Te3 thermoelectric generator (TEG) was fabricated to convert unused thermal energy into useful electrical energy. For the performance test, a dedicated experiment device consisting of a heating block operating with cartridge heaters and a cooling block through which a refrigerant flows was constructed. A 3×3 array of thermocouples was mounted on the heating block and the cooling block, respectively, to derive the temperature fields and heat transfer rate onto both sides of the TEG. Experiments were conducted for a total of 9 temperature differences, obtaining V-I and P-R curves. The results of 7 variables including Seebeck coefficients that have a major effect on performance were presented as a function of the temperature difference. The feasibility of the energy recovery performance of the developed TEG was verified from the maximum power output of 7.5W and conversion efficiency of 11.3%.