• 제목/요약/키워드: 열전선

검색결과 204건 처리시간 0.055초

Comparison of Heating Characteristics of Electric Heating Element Heater and Oil Hot Air Heater in Single Span Greenhouses (전기발열체 난방기 및 유류온풍 난방기의 단동온실 난방 특성 비교)

  • Kwon, Jin Kyung;Kim, Seung Hee;Shin, Young An;Lee, Jae Han;Park, Kyeong Sub;Kang, Youn Koo
    • Journal of Bio-Environment Control
    • /
    • 제26권4호
    • /
    • pp.324-332
    • /
    • 2017
  • The comparative experiments were conducted for single span greenhouses where cucumbers were cultivated to analyze the effect of heating between a carbon fiber electric heating element heater and an oil hot air heater in terms of the inside climate, energy consumption and plant growth. In order to analyze the effect of heating capacity, 6, 9, and 16 kW of electric powers were supplied to the electric heating element for same setting temperature of 15?. As a result, as the heating capacity increased, the number of ON-OFF cycles of the electric heating element and the temperature inside the greenhouse increased proportionally. In the comparison of two heaters, it was shown that the temperature and relative humidity distributions of the electric heating element installed greenhouse was much uniform than those of the oil hot air heater installed greenhouse. The heating energy consumptions during the heating period of 79 days were 867L for the oil hot air heater and 8,959 kWh for the electric heating element heater, and the heating costs were 607 and 403 thousand won respectively. In the electric heating element installed greenhouse, the cucumber growth was slightly better and the yield was 4.3% higher than those of the oil hot air heater installed greenhouse, but there were no statically significant difference in the cucumber growth and yield between greenhouses.

Preliminary Results of Marine Heat Flow Measurements in the Chukchi Abyssal Plain, Arctic Ocean, and Constraints on Crustal Origin (북극 척치 해저평원의 해양지열관측 초기결과와 지각기원에 대한 의미)

  • Kim, Young-Gyun;Hong, Jong Kuk;Jin, Young Keun;Jang, Minseok;So, Byung Dal
    • The Journal of Engineering Geology
    • /
    • 제32권1호
    • /
    • pp.113-126
    • /
    • 2022
  • The tectonic history of the Chukchi Abyssal Plain in the Amerasia Basin, Arctic Ocean, has not been fully explored due to the harsh conditions of sea ice preventing detailed observation. Existing models of the tectonic history of the region provide contrasting interpretation of the timing of formation of the crust (Mesozoic to Cenozoic), crust type (from hyper-extended continental crust to oceanic crust), and formation process (from parallel/fan-shaped rifting to transformation faulting). To help determine the age of the oceanic crust, the geothermal gradient was measured at three stations in the south of abyssal plain at depth of 2,160-2,250 m below sea level. Heat flow measurement stations were located perpendicular to the spreading axis over a 40 km-long transect. In-situ thermal conductivity measurement, corrected by the laboratory test, gave observed marine heat flows of 55 to 61 mW/m2. All measurements were taken during Arctic expeditions in 2018 (ARA09C expedition) and 2021 (ARA12C expedition) by the Korean ice-breaking research vessel (IBRV) Araon. Given the assumption of oceanic crust, the results correspond to formation in the Late Cretaceous (Mesozoic). The inferred age supports the hypothesis of formation activated by the opening of the Makarov Basin during the Late Mesozoic-Cenozoic. This would make it contemporaneous with rifting of the Chukchi Border Land immediately east of the abyssal plain. The heat flow data indicate the base of the gas hydrate stability zone is located 332-367 m below the seafloor, this will help to identify the gas hydrate-related bottom simulating reflector in the future seismic survey, as already identified on the Chukchi Plateau. Further geophysical surveys, including heat flow measurements, are required to increase our understanding of the formation process and thermal mantle structure of the abyssal plain.

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations (양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석)

  • Kim, Yong-Hyun;Yi, Yoo Soo;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • 제33권1호
    • /
    • pp.1-10
    • /
    • 2020
  • The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.

Process design for solution growth of SiC single crystal based on multiphysics modeling (다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계)

  • Yoon, Ji-Young;Lee, Myung-Hyun;Seo, Won-Seon;Shul, Yong-Gun;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제26권1호
    • /
    • pp.8-13
    • /
    • 2016
  • A top-seeded solution growth (TSSG) is a method of growing SiC single crystal from the Si melt dissolved the carbon. In this study, multiphysics modeling was conducted using COMSOL Multiphysics, a commercialized finite element analysis package, to get analytic results about electromagnetic analysis, heat transfer and fluid flow in the Si melt. Experimental results showed good agreements with simulation data, which supports the validity of the simulation model. Based on the understanding about solution growth of SiC and our set-up, crystal growth was conducted on off-axis 4H-SiC seed crystal in the temperature range of $1600{\sim}1800^{\circ}C$. The grown layer showed good crystal quality confirmed with optical microscopy and high resolution X-ray diffraction, which also demonstrates the effectiveness of the multiphysics model to find a process condition of solution growth of SiC single crystal.

Effects of Aging on Properties of MgO-Partially Stabilized Zirconia (마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과)

  • 정형진;오영제;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • 제24권3호
    • /
    • pp.243-250
    • /
    • 1987
  • The effects aging on some properties and thermal-shock behavior of zirconia partially stabilized with 9 mol% MgO (9MZ) were studied. 9MZ specimens were aged over $1200^{\circ}$-$1400^{\circ}C$ for 12hours subsequently, after sintering at $1650^{\circ}C$ for 4 hours. Fracture strength(both before and after thermal-shock test), linear thermal expansion, monoclinic fraction and phase transition by XRD, density, galvanic potential and microstructure were measured. Quantitative chemical analysis around the grain-boundary of the specimen aged at $1350^{\circ}C$ was also conducted by EDX. The aging of 9MZ specimen causes a thermal decomposition of cubic-$ZrO^{2}$ into the formation metastable tetragonal-$ZrO^{2}$ and MgO. The former increases the residual strength after thermal-shock test and the latter improves the thermal-shock resistance due to thermal conduction through the continuous magnesia phase and the formation of monoclinic phase content in matrix were increased with decreasing the aging temperature from $1400^{\circ}C$ to $1200^{\circ}C$. Galvanic potential of the aged specimen exhibited a proper emf characteristic.

  • PDF

Analysis on Heat Loss of Single-span Greenhouse Using Small-scaled Wind Tunnel (소형풍동을 이용한 단동 비닐온실의 열손실 분석)

  • Kim, Young Hwa;Kim, Hyung kow;Lee, Tae suk;Oh, Sung sik;Ryou, Young sun
    • Journal of Bio-Environment Control
    • /
    • 제29권1호
    • /
    • pp.73-79
    • /
    • 2020
  • The objective of this study is to analyze the heat transfer loss of covering materials in a single-span plastic greenhouse under the steady-state wind environment. To achieve this objective, the following were conducted: (1) design of a small-scaled wind tunnel (SCWT) to analyze heat losses of the greenhouse and its performance; (2) determination of the overall heat transfer coefficient (OHTC) for the covering materials using a small-scaled greenhouse model. The SCWT consists of the blowing, dispersion, steady flow, reduction and testing areas. Each part of the SCWT was customized and designed to maintain air flow at steady state and to minimize the variances in the SCWT test. In this study, the OHTCs of the covering materials were calculated by separating each with the roof, side wall, front and back of the small-scaled greenhouse model. The results of this study show that the OHTC of the roof increases as wind speed increases but the zones in which the increase rate of the OHTC decreased, were distinguished by wind tunnel wing speed of 2 ms-1. For the side wall, the increase rate of the OHTC was particularly higher in the 0-1 ms-1 zone.

An Empirical Study on Real-Time Temperature and Concentration Measurement Through Optical Absorption Characteristic Analysis of Gas in a Large Combustion System (가스의 광 흡수 특성 분석을 통한 대형 연소시스템 내 실시간 온도 및 농도 계측에 관한 실증 연구)

  • Park, Jiyeon;So, Sunghyun;Park, Daeguen;Ryu, Changkook;Lee, Changyeop;Yoo, Miyeon
    • Journal of the Korean Institute of Gas
    • /
    • 제24권5호
    • /
    • pp.29-38
    • /
    • 2020
  • It is practically difficult to accurately measure the temperature and concentration of a large combustion systems at industrial sites in real time. Temperature measurement using thermocouple, which are mainly used, is a point-measuring method that is less accurate and less reliable to analyze the wide area range of inner combustion system, and has limitations to internal accessibility. In terms of concentration analysis, most measurement methods use sampling method, which are limited by the difficulty of real-time measurement. As a way to overcome these limitations, laser-based measurement methods have been developed continuously. Laser-based measurement are line-average measurement methods with high representation and precision, which are beneficial for the application of large combustion systems. In this study the temperature and concentration were measured in real time by water vapor and oxygen generated during combustion using Tunable Diode Laser Absorption Spectroscopy (TDLAS). The results showed that the average temperature inside the combustion system was 1330℃ and the mean oxygen concentration was 3.3 %, which showed similar tendency with plant monitoring data.

Treatment of Textile Wastewater by Membrane-Bioreactor Process (막-생물반응조 공정을 이용한 염색폐수의 처리)

  • 강민수;김성수;황규대;강종림
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 한국막학회 1996년도 추계 총회 및 학술발표회
    • /
    • pp.60-61
    • /
    • 1996
  • 염색폐수를 처리하기 위하여, 일반적으로 물리.화학적 공정과 호기성 생물학적 공정을 조합한 방법들을 사용하고 있다. 하지만 호기성 생물학적 공정은 난분해성 물질의 제거능력이 낮고, 염색폐수의 주된 오염원인 염료분자가 호기성 미생물에 대한 에너지원으로 적합하지 않아 분해되기 어려우며, 물리.화학적 공정을 이용한 처리방법으로도 높은 처리효율을 얻을 수가 없다. 이러한 문제점을 극복하기 위하여 염색폐수 처리에 혐기-호기공정을 이용하며, 혐기성 공정에서 생물학적으로 분해되기 어려운 고분자 물질들을 가수분해하여 생물학적으로 분해가능한 저분자물질로 전환시키고, 호기성 공정에서 저분자 물질을 효과적으로 처라할 수 있기때문에 기존의 염색폐수 처리공정에 비하여 훨씬 높은 처리효율을 얻을 수 있다. 특히, 혐기성 미생물은 호기성 미생물에 비하여 난분해성 물질에 대한 분해력이 높고, 생물독성 물질에 대한 내성이 강하기 때문에 수중생물에 유해한 염료를 함유한 염색폐수의 색도제거에 효과적인 것으로 기대된다. 또한, 막분리 공정은 유기물 및 미생물이 막표면에 축적, 증식함으로써 막세공에 막힘현상을 초래하여 역세척 등의 물리적인 방법이나 화학약품을 이용한 화학적 세척 방법으로도 투과플럭스의 회복이 불가능한 상태를 유발함으로 막의 수명을 단축시키는 원인이 된다. 따라서, 혐기-호기공정과 조합하면 색도성분 제거 및 막 오염의 원인이 되는 유기물 및 용존성 고형물을 제거하고, 막 오염의 억제를 통한 후 수염의 연장은 물론, 처리수의 수질향상에 활용될 수 있을 것으로 사료된다.1로 강구와 함께 공구강 vial에 장입 후, Spex mixer/mill을 이용하여 기계적 합금화 하였다. 기계적 합금화 공정으로 제조한 분말에 대한 X-선 회절분석과 시차 열분석으로 합금화 정도를 분석하였다. (Bi1-xSbx)2Te3 및 Bi2(Te1-ySey)3 합금분말을 10-5 torr의 진공중에서 300℃∼550℃의 온도로 30분간 가압소결하였다. 가압소결체의 파단면에서의 미세구조를 주사전자현미경으로 관찰하였으며, 상온에서 가압소결체의 열전특성을 측정하였다. (Bi1-xSbx)2Te3의 기계적 합금화에 요구되는 공정시간은 Sb2Te3 함량에 따라 증가하여 x=0.5 조성에서는 4 시간 45분, x=0.75 조성에서는 5 시간, x=1 조성에서는 6 시간 45분의 vibro 밀링이 요구되었다. n형 Bi2(Te1-ySey)3 합금분말의 제조에 요구되는 밀링시간 역시 Bi2Se3 함량 증가에 따라 증가하였으며 Bi2(Te0.95Se0.05)3 합금분말의 제조에는 2시간, Bi2(Te0.9Se0.1)3 및 Bi2(Te0.85Se0.15)3 합금분말의 형성에는 3시간의 bivro 밀링이 요구되었다. 기계적 합금화로 제조한 p형 (Bi0.2Sb0.8)2Te3 및 n형 Bi2(Te0.9Se0.1)3 가압 소결체는 각기 2.9x10-3/K 및 2.1x10-3/K 의 우수한 성능지수를 나타내었다.ering)가 필수적이다. 그러나 침전법에서 얻게 되는 분말은 매우 미세하여 colloid를 형성하게 되며, 이러한 colloid 상태의 미세한 침전입자가 filte

  • PDF

Development and Validation of Inner Environment Prediction Model for Glass Greenhouse using CFD (CFD를 이용한 유리온실 내부 환경 예측 모델 개발 및 검증)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Min Jun;Kim, Seok Jun;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • 제29권3호
    • /
    • pp.285-292
    • /
    • 2020
  • Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62℃ and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.

Thermoelectric Properties of ZnkIn2O3+k(k=1∼9) Homologous Oxides (Homologous 산화물 ZnkIn2O3+k(k=1∼9)의 열전 특성)

  • Nam, Yun-Sun;Choi, Joung-Kyu;Hong, Jeong-Oh;Lee, Young-Ho;Lee, Myung-Hyun;Seo, Won-Seon
    • Korean Journal of Materials Research
    • /
    • 제13권8호
    • /
    • pp.543-549
    • /
    • 2003
  • In order to investigate the thermoelectric properties of $Zn_{k}$ $In_2$$O_{ 3+k}$ homologous compounds, the samples of $Zn_{k}$ /$In_2$$O_{3+k}$ / (k = integer between 1 and 9) were prepared by calcining the mixed powders of ZnO and $In_2$$O_3$fellowed by sintering at 1823 K for 2 hours in air, and their electrical conductivities and Seebeck coefficients were measured as a function of temperature in the range of 500 K to 1150 K. X-ray diffraction analysis of the sintered samples clarified that single-phase specimens were obtained for $Zn_{k} /$In_2$$O_{3+k}$ with k = 3, 4, 5, 7, 8, 9. Electrical conductivity of the $Zn_{k}$ $In_2$$O_{3+k}$ / decreased with increasing temperature, and decreased with increasing k for k $\geq$ 3. The Seebeck coefficient was negative at all the temperatures for all compositions, confirming that $Zn_{k}$ $In_2$$O_{3+k}$ / is an n-type semiconductor. Absolute values of the Seebeck coefficient increased linearly with increasing temperature and increased with increasing k for k $\geq$ 3. The temperature dependence of the Seebeck coefficient indicated that Z $n_{k}$I $n_2$ $O_{3+k}$ could be treated as an extrinsic degenerate semiconductor. Figure-of-merits of Z $n_{k}$I $n_2$ $O_{3+k}$ were evaluated from the measured electrical conductivity and Seebeck coefficient, and the reported thermal conductivity. Z $n_{7}$ I $n_2$ $O_{10}$ has the largest figure-of-merit over all the temperatures, and its highest value was $1.5{\times}$10$^{-4}$ $K^{-1}$ at 1145 K.5 K.