시계열자료를 분석하는데 있어 중요한 목적 중에 하나가 미래값에 대한 예측이다. 일반적으로 자기회귀이동평균모형에서는 백색잡음이 정규분포를 따른다는 가정 하에서 모수의 추론과 예측 및 예측구간의 추정이 이루어지고 있다. 그러나 자료가 이러한 가정을 만족하지 않는 경우, 자료를 가정에 맞게 변환시킨 후 분석하는 방법을 생각해 볼 수 있다. 이 논문에서는 변환된 자료를 분석하여 얻은 결과를 이용하여 본래의 척도에서의 미래값에 대한 예측구간을 추정하는 문제에 대해 알아본다. 제안하는 방법에서는 먼저 적절한 변환을 이용하여 자료를 정규가정을 만족하도록 변환시키고 변환된 자료를 이용하여 미래값에 대한 예측구간을 추정한 후, 역변환을 이용하여 예측구간을 추정한다. 이 논문에서는 시계열분석에서 모델링이 상대적으로 어려운 왜도의 문제를 해결하기 위해 Yeo-Johnson 변환을 중심으로 한 방법론을 소개한다. 모의실험 결과 제안된 방법에 의한 단측예측구간의 포함확률이 변환을 사용하지 않은 구간보다 명목수준에 가까운 것을 확인하였다.
하천유역 내의 인자를 이용하여 댐의 하천유량(stream flow)을 예측하는 일은 수문특성의 연구와 자연재해에 대한 대비 및 수공구조물과 방재시설의 설계 시 중요한 역할을 한다. 이러한 연구는 과거부터 활발히 이루어졌으며, 아직도 보다 높은 정확도의 결과를 얻기 위해 많은 연구들이 이루어지고 있다. 특히 기존의 유역 내 자료를 통해 비선형적 모델인 인공신경망(artificial neural network)을 이용한 하천유량을 예측하는 연구 역시 활발히 이루어지고 있다. 본 연구의 목적은 여러 유역인자들 중 하천유량에 가장 영향을 미치는 변수를 추출하고 보다 정확한 예측모델을 구축하는 것이다. 기존의 입력자료 선정기법중의 하나인 상호정보량(mutual information)과 수문기상자료의 비선형 동역학적 성분을 추출하는 웨이블렛 변환(wavelet transform)을 사용하여 인공신경망에 적용시켰다. 인공신경망을 적용하는 경우, 수문자료에 있어서 변수의 선택과 자료의 상태가 강우예측의 결과에 큰 영향을 미친다. 이러한 변수의 선택에 있어서 상호정보량을 바탕으로 한 인공신경망 입력변수 선택기법이 많이 사용되고 있다. 일반적으로 시계열자료는 경향성(trend), 주기성(periodicity) 및 추계학적 성분(stochastic component)의 선형조합으로 가정될 수 있으며, 특히 경향성과 주기성은 시계열 모형을 위해 제거되어야 할 결정론적 성분으로 취급한다. 즉. 수문 기상자료에 포함되어 있는 경향성과 주기성과 같은 비선형 동역학적 잡음(nonlinear dynamical noise)을 제거하고 입력자료의 카오스적 거동을 보이는 성분을 분리하기 위해 웨이블렛 변환을 사용하였다. 대상유역은 한강 유역에 포함되어 있는 충주댐으로 선택하였다. 유역 내 다양한 인자들과 하천유량사이의 상호정보량을 구해 영향력이 가장 큰 변수를 추출하고, 그 자료를 웨이블렛 변환을 적용하여 인공신경망의 입력자료로 사용하였다. 본 논문에서는 위와 같은 과정을 이용해 추정한 하천유량 결과와 기존의 방법인 상호정보량을 이용해 인공신경망을 적용한 결과를 실제자료와 비교하였다.
금융 시계열 분석은 현대 사회의 경제적, 사회적으로 매우 중요한 역할을 하며 세계 발전에 영향을 미치는 중요한 과제지만 많은 잡음(noise)과 불확실성 등의 어려움으로 인해 금융 시계열 분석 예측은 어려운 연구 주제이다. 본 논문에서는 비정형 데이터와 정형 데이터를 함께 이미지로 변환하여 시장을 예측 하는 방법(MPIL)을 제안한다. 시장 예측을 위해 n일 기간의 비정형 데이터인 SNS, 뉴스 데이터를 감정분석하고 정형 데이터인 시장 데이터를 GADF 알고리즘으로 이미지 변환하고 이미지 학습을 통해 n+1일의 가격을 예측하는 초단기 시장을 예측한다. MPIL은 평균 정확도 56%로 기존 시장예측에 사용되던 감정분석을 활용하여 LSTM으로 시장을 예측하는 모델 평균 정확도 50%보다 높은 정확도를 보였다.
본 논문에서는 초광대역 (Ultra-wideband, UWB) 시스템에서 실내 위치 측위를 위한 새로운 거리 추정 기법을 제안한다. 제안하는 기법은 딥러닝 기법 중 하나인 순환 신경망 (RNN)을 기반으로 한다. 순환신경망은 시계열 신호를 처리하는데 유용한데 UWB 신호 역시 시계열 데이터로 볼 수 있기 때문에 순환신경망을 사용한다. 구체적으로, UWB 신호가 IEEE 802.15.4a 실내 채널모델을 통과하고 수신된 신호에서 순환신경망 회귀를 통해 송신기와 수신기 사이의 거리를 추정하도록 학습한다. 이렇게 학습된 순환신경망 모델의 성능은 새로운 수신신호를 이용하여 검증하며 기존의 임계값 기반의 거리 추정 기법과도 비교한다. 성능지표로는 제곱근 평균추정에러 (root mean square error, RMSE)를 사용한다. 컴퓨터 모의실험 결과에 따르면 제안하는 거리 추정 기법은 수신신호의 신호 대 잡음비 (signal to noise ratio, SNR) 및 송수신기 사이의 거리와 상관없이 기존 기법보다 항상 월등히 우수한 성능을 보인다.
본 논문에서는 CA-CFAR 알고리듬을 보완한 효율적인 CFAR 알고리듬을 제시한다. 레이더 수신기에 유입되는 신호는 열잡음뿐만 아니라, 클러터 및 다중표적 신호가 존재하며, 시스템 내부에서 발진되는 하모닉 성분도 존재하여 기존에 널리 알려진 CA-CFAR로는 표적 탐지 성능을 보장할 수 없다. 이를 보완하기 위한 OS-CFAR나 ML-CFAR 등이 연구되었지만, 제시하는 CFAR 알고리듬은 OS-CFAR나 ML-CFAR에 비해 적은 계산량으로 레이더 신호처리기에 적용시킬 수 있다. 제시하는 CFAR 알고리듬의 문턱치와 오경보율의 관계식을 유도하고, SNR 관점과 ADT 관점에서 CFAR 손실을 분석하였다.
In this paper, we describe the design and implementation of the new current-current negative feedback (CCNF) voltage-controlled oscillator (VCO), which suppresses 1/f induced low-frequency noise. By means of the CCNF, the high-frequency noise as well as the low-frequency noise is prevented from being converted into phase noise. The proposed CCNF VCO shows 11-dB reduction in phase noise at 10 kHz offset, compared with the conventional differential VCO. The phase noise of the proposed VCO is -87 dBc/Hz at 10 kHz offset frequency from 5.5-GHz carrier. The proposed VCO consumes 14.0 mA at 2.0 V supply voltage, and shows single-ended output power of -12.0 dBm.
고속무선 이동통신에서 가장 문제가 되는 것이 전파의 다중경로에 의한 페이딩 잡음이며, 이러한 페이딩의 문제점을 이동성을 보장하면서도 효율적으로 해결할 수 있는 방법이 최근 제안된 STTD (Space Time Transmitter Diversity) 기법이다. STTD 방법은 2개의 송신 안테나와 1개의 수신안테나로 쉽게 2차 다이버시티를 제공할 수 있다. 본 논문에서는 상관된 레이레이 페이딩 채널환경에서 적용될 수 있는 확률 밀도함수를 유동하고 유도된 확률밀도함수를 이용하여 비동기 M-ray FSK, DPSK 및 ASK 송신 다이버시티 시스템의 정확한 오류확률을 유도하고 그 성능을 비교 분석한다.
In order to identify a transfer function model with noise, penalty function method has been widely used. In this method, estimation process for possible model parameters from low to higher order proceeds the model identification process. In this study, based on linear estimation method, a new approach unifying the estimation and the identification of ARMAX model is proposed. For the parameter estimation of a transfer function model with noise, linear estimation method by noise separation is suggested instead of nonlinear estimation method. The feasibility of the proposed model identification and estimation method is verified through simulations, namely by applying the method to time series model. In the case of time series model with noise, the proposed method successfully identifies the transfer function model with noise without going through model parameter identification process in advance. A new algorithm effectively achieving model identification and parameter estimation in unified frame has been proposed. This approach is different from the conventional method used for identification of ARMAX model which needs separate parameter estimation and model identification processes. The consistency and the accuracy of the proposed method has been verified through simulations.
위성발사체용 GPS(Global Positioning System) 수신기는 위성발사체에 탑재되어 전 비행구간에 걸쳐 위치 및 속도를 정확하게 계산하고, 계산된 항법정보를 비행안전 분야에 활용할 수 있는 시스템이다. 본 논문에서는 -34$^{\circ}C$에서 +71$^{\circ}C$로 변화하는 온도 조건에서 GPS 수신기의 신호대잡음비, Fix 모드, 위치 및 속도 정확도, 가시위성 및 추적위성의 개수, PDOP 등의 성능을 분석한다.
본 논문에서는 KSLV-I 전자탑재물의 하나인 GPS 수신기의 진공환경에서의 동작성을 검증하기 위하여 수행된 단품수준의 열진공시험 및 시스템수준의 진공시험에 대하여 소개하고 GPS 수신기의 운용방법 및 진공환경에서의 성능분석 결과를 제시하며, 압력변화 및 고진공 조건에서 나타날 수 있는 전자부품의 손상 및 성능저하 정도를 GPS 수신기에서 계산된 최대신호대잡음비와 항법해 오차를 분석한 추적성능 및 항법성능을 통해 살펴보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.