• Title/Summary/Keyword: 열역학적 특성

Search Result 349, Processing Time 0.026 seconds

Application of Monte Carlo Simulation to Intercalation Electrochemistry I. Thermodynamic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.79-85
    • /
    • 2002
  • The present article is concerned with the application of the Monte Carlo simulation to electrochemistry of lithium intercalation from the thermodynamic view point. This article first introduced the fundamental concepts of the ensembles, and Ising and lattice gas models in statistical thermodynamics for the Monte Carlo simulation in brief. Finally the Monte Carlo method based upon the lattice gas model was employed to analyse thermodynamics of the lithium intercalation into the transition metal oxides. Especially we dealt with the thermodynamic properties as the electrode potential curve and the partial molar internal energy and entropy of lithium ion in the case of the $LiMn_2O_4$ electrode, and consequently confirmed the utility of the Monte Carlo method in the field of electrochemistry of the lithium intercalation.

Theoretical Study on the High Energetic Properties of HMX/LLM-116 Cocrystals (HMX/LLM-116 공결정의 고에너지 특성에 관한 이론 연구)

  • Kim, Sung-Hyun;Ko, Yoo-Mi;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The theoretical investigation has been performed to predict detonation velocity, detonation pressure, and thermodynamic stability of HMX/LLM-116 cocrystal. All possible geometries of HMX, LLM-116, and cocrystal have been optimized at the B3LYP/cc-pVTZ level of theory. The binding energy for the trigger bond and cluster has been calculated to predict the thermodynamic stability. The MP2 binding energies were obtained using single point energy calculation at the B3LYP optimized geometries, and the density has been calculated from monte carlo integration. The detonation velocity and detonation pressure have been calculated using Kamlet-Jacobs equation, while enthalpy has been predicted at the CBS-Q level of theory.

Characteristics of Isotherm, Kinetic and Thermodynamic Parameters for the Adsorption of Acid Red 66 by Activated Carbon (활성탄에 의한 Acid Red 66의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.30-38
    • /
    • 2020
  • The kinetic and thermodynamic parameters of Acid Red 66, adsorbed by granular activated carbon, were investigated on areas of initial concentration, contact time, and temperature. The adsorption equilibrium data were applied to Langmuir, Freundlich, Temkin, Redlich-Peterson, and Temkin isotherms. The agreement was found to be the highest in the Freundlich model. From the determined Freundlich separation factor (1/n = 0.125 ~ 0.232), the adsorption of Acid Red 66 by granular activated carbon could be employed as an effective treatment method. Temkin's constant related to adsorption heat (BT = 2.147 ~ 2.562 J mol-1) showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo-second order model with good agreement. The results of the intraparticle diffusion equation showed that the inclination of the second straight line representing the intraparticle diffusion was smaller than that of the first straight line representing the boundary layer diffusion. Therefore, it was confirmed that intraparticle diffusion was the rate-controlling step. From thermodynamic experiments, the activation energy was determined as 35.23 kJ mol-1, indicating that the adsorption of Acid Red 66 was physical adsorption. The negative Gibbs free energy change (ΔG = -0.548 ~ -7.802 kJ mol-1) and the positive enthalpy change (ΔH = +109.112 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, respectively. The isosteric heat of adsorption increased with the increase of surface loading, indicating lateral interactions between the adsorbed dye molecules.

Characteristics of Isotherm, Kinetic, and Thermodynamic Parameters for Reactive Blue 4 Dye Adsorption by Activated Carbon (활성탄에 의한 Reactive Blue 4 염료의 흡착에 대한 등온선, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.122-130
    • /
    • 2020
  • The isotherm, kinetic, and thermodynamic parameters of reactive blue 4 adsorbed by activated carbon were investigated for activated carbon dose, pH, initial concentration, contact time, and temperature data. The adsorption of the RB 4 dye by activated carbon showed a concave shape in which the percentage of adsorption increased in both directions starting from pH 7. The isothermal adsorption data were applied to Langmuir, Freundlich, and Temkin isotherms. Both Freundlich and Langmuir isothermal adsorption models fit well. From determined Freundlich separation factor (1/n = 0.125 ~ 0.232) and Langmuir separation factor (RL = 1.53 ~ 1.59), adsorption of RB 4 by activated carbon could be employed as an effective treatment method. The constant related to the adsorption heat (BT = 2.147 ~ 2.562 J mol-1) of Temkin showed that this process was physical adsorption. From kinetic experiments, the adsorption process followed the pseudo second order model with good agreement. The results of the intraparticle diffusion model showed that the inclination of the first straight line representing the surface diffusion was smaller than that of the second straight line representing the intraparticle pore diffusion. Therefore, it was confirmed that intraparticle pore diffusion is the rate-controlling step. The negative Gibbs free energy change (ΔG = -3.262 ~ -7.581 kJ mol-1) and the positive enthalpy change (ΔH = 61.08 kJ mol-1) indicated the spontaneous and endothermic nature of the adsorption process, proving this process to be spontaneous and endothermic.

Thermal Denitration of High Concentration Nitrate Salts Waste Water (열분해에 의한 고농도 질산염 폐액의 탈질)

  • ;;;;;C. Latge
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.665-670
    • /
    • 2003
  • This study investigated the thermodynamic and the thermal decomposition properties of high concentration nitrate salts waste water for the lagoon sludge treatment. The thermodynamic property was carried out by COACH and GEMINI II based on the composition of nitrate Salts waste water. The thermal decomposition property was carried out by TG-DTA and XRD. Ammonium nitrate and sodium nitrate were decomposed at $250^{\circ}C$$730^{\circ}C$$450^{\circ}C$$Na_2O$ into stable $Na_2O$.$Al_2O_3$. The flow sheet for nitrate salts waste water treatment was proposed based on the these properties data. These will be used by the basic data of the process simulation.

  • PDF

Effects of the Polyurethane Contents and Blend Time on the Crystalline Structure and Mechanical Properties of Nylon 6/PU Blend (폴리우레탄 함량과 블렌드 시간이 Nylon 6/pu 블렌드의 결정구조 및 기계적 특성에 미치는 영향)

  • 윤철수;지동선
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.474-477
    • /
    • 2002
  • 열가소성 폴리우레탄(PU)은 우수한 탄성을 갖는 유용한 고분자중의 하나로 섬유나 플라스틱에 널리 사용되고 있다. PU는 상온보다 높은 유리전이 온도(T$_{g}$)를 갖는 유리상의 hard segment와 상온보다 낮은 유리전이 온도(T$_{g}$)를 갖는 고무상의 soft segment로 구성되어 있으며 열역학적으론 비상용성으로 인하여 미세 상분리 구조를 가지게 되어 고무보다 높은 탄성률과 우수한 인장 회복거동을 갖게 된다[1-3]. (중략)

  • PDF

Thermomechanical Characteristics of SMAs with Strain-rate Dependence (변형률 효과를 고려한 형상기억합금의 열-기계적 특성)

  • Roh, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.129-134
    • /
    • 2010
  • The influence of the strain-rate on the thermomechanical characteristics of shape memory alloys (SMAs) is numerically investigated. The three-dimensional SMA constitutive equations of strain-rate effect is developed. The strain-rate effect is taken into account by introducing a coupling equation between the production rate of martensite and the temperature change. For the numerical results, the SMA algorithm is implemented into the ABAQUS finite element program. Numerical simulation shows that the pseudoelasticity of SMA may significantly be changed by considering the strain-rate due to the temperature change.

Study on the Thermal Property and Aging Prediction for Pressable Plastic Bonded Explosives through ARC(Heat-wait-search method) & Isothermal Conditions (ARC(Heat-wait-search method)와 Isothermal 조건을 이용한 압축형 복합화약의 열적 특성 및 노화 예측 연구)

  • Lee, Sojung;Kim, Seunghee;Kwon, Kuktae;Jeon, Yeongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • The thermal property is one of the most important characteristics in the field of energetic materials. Because energy materials release decomposition heat, differential scanning calorimetry (DSC) is frequently used for thermal analysis. However, thermodynamic events, such as melting can interfere with DSC kinetic analysis. In this study, we use isothermal mode for DSC measurement to avoid thermodynamic issues. We also merge accelerating rate calorimetry(ARC) data with DSC data to obtain a robust prediction results for small scale samples and for large scale samples as well. For the thermal property prediction, advanced kinetics and technology solutions(AKTS) programs are used.

Combustion Characteristics of Landfill Gas in Constant Volume Combustion Chamber for Large Displacement Volume Engine (I) - Fundamental Characteristics - (대형기관 모사 정적연소실에서 매립지 가스의 연소특성에 대한 연구 (I) - 기초 특성 -)

  • Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.733-741
    • /
    • 2013
  • This is the first paper on the combustion characteristics of landfill gas in a constant volume combustion chamber for a large displacement volume commercial engine, and it discusses the fundamental characteristics of fuel from the viewpoint of thermochemistry and thermodynamics and compares these results with experimental ones. The results show that the final pressures obtained from theoretical analysis vary under the same heating value owing to the change in the constant volume specific heat owing to the difference in the burned gas composition according to the fuel gas compositions; furthermore, the stoichiometric ratios and trends of analytical and experimental pressures coincide very well, although some minor differences are observed between the two. The root cause of the difference is the heat transfer, which changes the specific heat and lowers the temperature considerably, in the real combustion process. In addition, the large chamber volume and ignition position promote the heat transfer to the wall. Finally, the fuel conversion efficiency increases as the methane mol fraction decreases, and it is maximum when the stoichiometric ratio ranges from 0.8 to 0.9. These increases due to the composition and stoichiometric ratio could sufficiently compensate the decrease due to the specific heat ratio drop, LFG might be more advantageous than pure methane in a real engine.

The Characteristics of Electric Resistivity on the Ceramic Oxide, $Nd_{2-x}Ce_xCuO_4$ (세라믹 초전도체, $Nd_{2-x}Ce_xCuO_4$의 전기적 저항 특성)

  • Kim, Jeong-Sik
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.133-137
    • /
    • 1996
  • 본연구에서는 n-type 세라믹 초전도체인 Nd2-xCexCuO4상의 산소함량에 따른 \ulcorner기적저항의 변화를 고찰하고자 하였다. 일반적인 소결과 어닐링과정을 결쳐 제조된 Nd1.85Ce0.15CuO4-x 시편을 여러 온도와 산소분압의 분위기하에서 어닐링시킴으로써 산소의 함유량이 다른 시편들을 준비하였고 각각의 시편의 산소함량은 TGA(Thermogravimetric Analysis0에 의해 측정하였다. Nd1.85Ce0.15CuO4-x시편의 전기적 저항 측정은 표준 4-탐침방법을 이용하여 액체헬륨을 주입시켜 상온으로부터 4K까지 측정하였다. Nd1.85Ce0.15CuO4-x시편의 산소함량, 3.96$\leq$4-x$\leq$4.0의 범위에서 전기적저항을 측정한 결과 초전도특성이 나타나기 시작한 임계산소함량은 4-x=3.990이었고 이때의 임계온도 Tc=12K이었다. 또한 임계온도, Tc는 산소함량 4-x=3.96에서 24K로 측정되었다. 특이할 만한 현상은 CuO/Cu2O 열역학적 상전이가 일어나는 조건이 Nd1.85Ce0.15CuO4-x 시편의 초전도가 일어나는 임계와 일치하였다. 즉, Cu2O가 안정한 영역에서는 초전도특성이 나타났고 CuO가 안정한 영역에서는 초전도특성이 나타나지 않았다.

  • PDF