• Title/Summary/Keyword: 열수 광상

Search Result 174, Processing Time 0.03 seconds

Original Rocks of the Talc Ore Deposits and their Steatitization in the Yesan Area, Choongnam, Korea (충남 예산지구 활석광상의 기원암과 활석화작용)

  • Woo, Young-Kyun;Lee, Dong-Woo
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.548-557
    • /
    • 2001
  • Ultramafic rocks in the Yesan talc ore deposits area are unknown age plutonic rocks which intruded PreCambrian Yoogoo gneiss, and were intruded by Jurassic biotite granite, and Cretaceous acidic and mafic dykes. The ultramafic rocks consist mainly of serpentinite with some amphibolite and talc ore body. The serpentinites are divided 5 rock types (S1${\sim}$S5) on the basis of the developed degree of serpentine phenocrysts and layerings. It seems that the original rocks of the serpentinites were co-magmatic peridotites (dunite and pyroxene peridotite). Main serpentinization from the original rocks was occurred during amphibolite facies regional metamorphism in Choongnam area which Yoogoo gneiss was affected. Main steatitization from the serpentinites was hydrothermal alteration by ascended hydrothermal fluid through crush zones.

  • PDF

Genesis of Clay Minerals in the Vicinity of Gwangpo Bay, Southern Coast of Korea (광포만 집수유역내에 분포하는 점토광물의 성인에 관한 연구)

  • PARK Maeng-Eon;SONG Yong-Sun;KIM Hee-Joon;KIM Dae-Choul;PAIK In-Sung;CHUNG Sang-Yong;SONG Shi-Tae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.259-268
    • /
    • 1988
  • Clay deposits in the vicinity of the Gwangpo Bay, southern coast of Korea, occur restrictively in anorthositic masses. Laumontite and meta-halloysite are the predominant clay minerals with iron oxides at the uppermost surface. Chlorite and halloysite occur in deeper zone. Beneath the main clay horizon, but not above, some anorthositic rocks are pervasively altered to quartz, sericite, chlorite, pyrite and montmorillonite along the hydrothermal channels. The hypotheses of hydrothermal and weathering origins of the clay minerals are tested by multi-component equilibrium calculations of the reactions of modified hydrothermal water and rain water with anorthositic rocks at $100^{\circ}C\;and\;25^{\circ}C$, respectively. The calculated mineralogy from the reaction with rain water resembles natural mineral assemblage except for abundance in laumontite. The result implies that the weathering process is the main machanism of the formation of clay deposits in the area.

  • PDF

Geophysical Survey in the Taran Area on the Central Kalimantan, Indonesia (인도네시아 중부 칼리만탄 타란지역에서의 물리탐사)

  • 조진동;김인준;박인화
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.155-162
    • /
    • 2002
  • There are many typical epithermal deposits scattering in the Taran of central Kalimantan. Indonesia. To get the shallow geological information, we carried out the geophysical exploration: spontaneous potential survey, in-suite magnetic susceptibility measurement and relistivity survey method in this area for a few weeks from September 30th to October 27th in 1997. SP survey (Fluke 27 multimeter)/magnetic susceptibility (EK -7 meter) measurement was carried out with a 250m$\times$10m lattice net in N45$^{\circ}$W direction. The dipole-dipole array resistivity survey was conducted with an electrode spacing of ${\alpha}$=30 m and electrode separation index n=7 at the line 5. The result shows that was the gold bearing quartz vein area can be divided into two type lone: low sulfidation type and high sulfidation type zone. The low resistivity value in the survey line 5 indicated a fracture Bone associated with the high sulfidation zone.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula: (4) Kimhae Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구: (4) 김해납석광상)

  • Kim, Soo Jin;Choo, Chang Oh;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.122-144
    • /
    • 1993
  • The Kimhae napseok clay deposit was studied to characterize its mineralogy and genesis. Geology of the deposit is composed of Tertiary volcanic rocks and granodiorite. Tertiary volcanic rocks consist of andesitic tuff with minor interstratified tuffaceous shale, and rhyodacitic tuff. The main ore body of 2.4 to 4 m in thickness developed parallel to the bedding of andesitic tuff bed. Its strike and dip are $N70^{\circ}E-N85^{\circ}E$ and $16^{\circ}NW-32^{\circ}NW$, respectively. Two alteration zones; the propylitic zone of albite-epidote-chlorite-quartz assemblage and advanced argillic zone of pyrophyllite-dickite-alunite-diaspore assemblage are developed. Correlation of $SiO_2$ to $Al_2O_3$ shows no relation in propylitic zone, while a negative linear relation in advanced argillic zone. Chemical variation shows that $SiO_2$, $Al_2O_3$, MgO, CaO, $Na_2O$ and $K_2O$ were leached out during hydrothermal alteration. Pyrophyllite, the most abundant mineral in advanced argillic zone, occurs as low temperature 2M polytype. It is closely associated with dickite, diaspore and alunite. The Hinckley index of dickite is 0.83 showing moderate crystallinity. Na content is increasing in the M site with the increasing content of cations in the R-site. the mole percent of Na replacing K in alunite ranges from 53.2 to 71.6. It is also found that pyrophyllite grows in the dissolution site of diaspore. Plagioclase was albitized. Lowering of pH caused mainly by sulfide and sulfate decomposition resulted in preferential leaching of Si. It is inferred that aluminum released from plagioclase in the volcanic rocks as well as from the tuffaceous shale intercalated in andesitic tuff were the main sources of aluminum required for the formation of clay deposit. pH in hydrothermal fluid decreased from propylitic zone to advanced argillic zone with increasing degree of alteration. Based on experimental data reported in the literature and mineral assemblages, the formation temperature of the deposit ranges 270 to $320^{\circ}C$.

  • PDF

Origin of Manganese Carbonates in the Janggun Mine, South Korea (장군광산산(將軍鑛山産) 망간광물의 성인(成因)에 관(關)한 연구(硏究))

  • Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.2
    • /
    • pp.109-122
    • /
    • 1986
  • Mn-Pb-Zn-Ag deposits of the Janggun mine are hosted in the Cambro-Ordovician Janggun limestone mostly along the contacts of the Jurassic Chunyang granite. The deposits are represented by several ore pipes and steeply dipping lenticular bodies consisting of lower Pb-Zn-Ag sulfide ores and upper manganese carbonate and oxide ores. The former consists mainly of arsenic, antimony, silver, manganese, and tin-bearing sulfides, whereas the latter are characterized by hypogene rhodochrosite, and superficial manganese oxides including todorokite, nsutite, pyrolusite, cryptomelane, birnesite and janggunite. Origin of the upper manganese ore deposits has been a controversial subject among geologists for this mine: hydrothermal metasomatic vs. syngenetic sedimentary origin. Syngenetic advocators have proposed a new sedimentary rock, rhodochrostone, which is composed mainly of rhodochrosite in mineralogy. In the present study, carbon, oxygen and sulfur isotopic compositions were analayzed obtaining results as follows: Rhodochrosite minerals, (Mn, Ca, Mg, Fe) $CO_3$, from hydrothermal veins, massive sulfide ores and replacement ores in dolomitic limestone range in isotopic value from -4.2 to -6.3‰ in ${\delta}^{13}C$(PDB) and +7.6 to +12.9‰ in ${\delta}^{18}O$(SMOW) with a mean value of -5.3‰ in ${\delta}^{13}C$ and +10.7‰ in ${\delta}^{18}O$. The rhodochrosite bearing limestone and dolomitic limestone show average isotopic values of -1.5‰ in ${\delta}^{13}C$ and +17.5‰ in ${\delta}^{18}O$, which differ from those of the rhodochrosite mentioned above. This implies that the carbon and oxygen in ore fluids and host limestone were not derived from an identical source. ${\delta}^{34}S$ values of sulfide minerals exhibit a narrow range, +2.0 to +5.0‰ and isotopic temperature appeared to be about $288{\sim}343^{\circ}C$. Calculated initial isotopic values of rhodochrosite minerals, ${\delta}^{18}O_{H_2O}=+6.6$ to +10.6‰ and ${\delta}^{13}C_{CO_2}=-4.0$ to -5.1 ‰, strongly suggest that carbonate waters should be deep seated in origin. Isotopic data of manganese oxide ores derived from hypogene rhodochrosites suggest that the oxygen of the limestone host rock rather than those of meteoric waters contribute to form manganese oxide ores above the water table.

  • PDF

Element Dispersion and Wallrock Alteration Analysis Using Portable XRF and SWIR in the Samgwang Au Deposit (휴대용 XRF와 단파장적외선 분광분석을 이용한 삼광 금광상의 원소분산 및 모암변질 분석)

  • Kim, Junkyum;Shin, Dongbok;Yoo, Bongchul;Im, Heonkyung;Kim, Ilkyu
    • Economic and Environmental Geology
    • /
    • v.52 no.4
    • /
    • pp.259-274
    • /
    • 2019
  • Using portable XRF and SWIR analyzer, the characteristics of element dispersion and wallrock alterations induced by interaction between hydrothermal fluids and host rocks were investigated and ore exploration factors were estimated for the orogenic-type Samgwang Au deposits. On this purpose, in-situ measurements were conducted for 804 spots at regular intervals with a total of 4,824 times for host rocks, consisting of schist and gneiss, and altered wallrocks contacted with quartz veins in the Bonhang adit of the deposit, and the results were compared with quantitative data obtained by XRF and ICP analysis. The regression coefficients are 0.88 for major elements and 0.56 for trace elements, excluding V. For polished rock slabs, better results came out for major elements, 0.97 and for trace elements, 0.65. In altered wallrocks contacted with quartz veins, elements such as Fe, Zn, and Rb exhibit positive correlations with As in concentrations, while V forms a negative trend. Contour maps demonstrate that As, Zn, Rb, Fe, Ti, Cr, and Ni are enriched together near quartz veins, showing similar elemental behaviors. In-situ analysis using portable SWIR analyzer represents that schist and gneiss contain mica, illite, chlorite, sericite, amphibole, and epidote, while illite, sericite, gypsum, and mica are present in the altered rocks contacted with quartz veins. In contour maps, chlorite occurs mostly in host rocks, while sericite is concentrated near quartz veins. These results are similar to those of previous studies for element dispersion and hydrothermal alteration, and support the possibility for application of in-situ analysis on the exploration of orogenic gold deposit.

Mineralogy and Genesis of Manganese Ores from the Buncheon Mine, Korea (분천광산(汾川鑛山)의 망간광석(鑛石)에 대(對)한 광물학적(鑛物學的) 및 성인적(成因的) 연구(硏究))

  • Kim, Soo Jin;Son, Byong Kook
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.273-282
    • /
    • 1984
  • The Buncheon manganese ore deposits occur in vein along the fault of $N20^{\circ}E$, cutting the foliation of Yulri Series. The deposits consist of primary manganese silicate ores in the deeper part and superficial manganese oxide ores near the surface. The spatial distribution of manganese oxide ores with respect to the manganese silicate ores suggests that the manganese oxide ores are the supergene oxidation product of the manganese silicate ores. Manganese silicate ores consist mainly of fine-to coarse-grained pyroxmangite with minor rhodochrosite, quartz, sulfides and chlorite. Manganese oxide ores are composed of supergene manganese oxides such as nsutite, birnessite, manganite and todorokite, and other associated minerals. Paragenetic sequence of formation of the manganese minerals are as follows: $\array{{rhodochrosite{_{\rightarrow}^o}todorokite{_{\searro}^o}}\\pyroxmangite{_{\line(10){90}}^o}{\nearro}}birnessite{_{\rightarrow}^o}nsutite{_{\rightarrow}^s}manganite$ In order to elucidate the mineralogy of the manganese minerals, microscopic, X-ray, IR spectroscopic, and thermal studies were made for manganese and associated minerals.

  • PDF

Occurrence and Chemical Composition of Dolomite from Zhenzigou Pb-Zn Deposit, China (중국 젠지고우 연-아연 광상의 돌로마이트 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.177-191
    • /
    • 2021
  • The Zhenzigou Pb-Zn deposit, one of the largest Pb-Zn deposit in the northeast of China, is located at the Qingchengzi mineral field in Jiao Liao Ji belt. The geology of this deposit consists of Archean granulite, Paleoproterozoinc migmatitic granite, Paleo-Mesoproterozoic sodic granite, Paleoproterozoic Liaohe group, Mesozoic diorite and monzoritic granite. The Zhenzigou deposit which is a strata bound SEDEX or SEDEX type deposit occurs as layer ore and vein ore in Langzishan formation and Dashiqiao formation of the Paleoproterozoic Liaohe group. Based on mineral petrography and paragenesis, dolomites from this deposit are classified three type (1. dolomite (D0) as hostrock, 2. dolomite (D1) in layer ore associated with white mica, quartz, K-feldspar, sphalerite, galena, pyrite, arsenopyrite from greenschist facies, 3. dolomite (D2) in vein ore associated with quartz, apatite and pyrite from quartz vein). The structural formulars of dolomites are determined to be Ca1.00-1.03Mg0.94-0.98Fe0.00-0.06As0.00-0.01(CO3)2(D0), Ca0.97-1.16Mg0.32-0.83Fe0.10-0.50Mn0.01-0.12Zn0.00-0.01Pb0.00-0.03As0.00-0.01(CO3)2(D1), Ca1.00-1.01Mg0.85-0.92Fe0.06-0.11 Mn0.01-0.03As0.01(CO3)2(D2), respectively. It means that dolomites from the Zhenzigou deposit have higher content of trace elements compared to the theoretical composition of dolomite. Feo and MnO contents of these dolomites (D0, D1 and D2) contain 0.05-2.06 wt.%, 0.00-0.08 wt.% (D0), 3.53-17.22 wt.%, 0.49-3.71 wt.% (D1) and 2.32-3.91 wt.%, 0.43-0.95 wt.% (D2), respectively. The dolomite (D1) from layer ore has higher content of these trace elements (FeO, MnO, ZnO and PbO) than dolomite (D0) from hostrock and dolomite (D2) from quartz vein. Dolomites correspond to Ferroan dolomite (D0 and D2), and ankerite and Ferroan dolomite (D1), respectively. Therefore, 1) dolomite (D0) from hostrock is a Ferroan dolomite formed by marine evaporative lagoon environment in Paleoproterozoic Jiao Liao Ji basin. 2) Dolomite (D1) from layer ore is a ankerite and Ferroan dolomite formed by hydrothermal metasomatism origined metamorphism (greenschist facies) associated with Paleoproterozoic intrusion. 3) Dolomte (D2) from quartz vein is a Ferroan dolomite formed by hydrothermal fluid origined Mesozoic intrusion.

Geochemistry of tourmalines in the Ilgwang Cu-W breccia-pipe deposit, Southeastern Gyeongsang Basin (경상남도 일광의 각력파이프형 구리(Cu)광상에서 산출되는 전기석의 지구화학)

  • 양경희;장주연
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.259-270
    • /
    • 2002
  • A small granodiorite-quartz monzonitic stock containing sericitic and propylitic alteration assemblages hosts a Cu-W breccia-pipe deposit in the southeastern Cyeongsang basin. The mineralized breccia-pipe contains angular to subangular brecciated fragments of granitic rocks showing clast-supported textures. An assemblage of quartz, tourmalines, sulfide minerals (mainly chalcopyrite, arsenopyrite and pyrrhotite) and calcite was precipitated as a hydrothermal cement between the brecciated fragments. A tourmaline aureole surrounds the breccia pipe. Extensive tourmalinization of the granitic rocks near and within the pipe and no tourmalinization in the sedimentary and volcanic rocks. The tourmalines are marked by Fe-rich, black charcoal-like schorl (80 mol% schorl relative) nearer the schorl-dravite solid solution. The chemical changes in the hydrothermal fluid are reflected by variations in compositional Boning from cores to rims. They generally contain cores with low values of Fe/(Fe+Mg) and high values of Na/(Na+ca) relative to rims. This is because of an increase Fe and Ca contents toward rims. The main trend of these variations is a combination of the exchange vectors Ca(Fe, Mg) $(NaAl)_{- }$ $_1$ and $Fe^{3}^{+}$ $Al_{[-10]}$ $_1$ It is thought that boiling causes the loss of $H_2$ into the vapor phase resulting in the oxidation of Fe in the aqueous phase. pH of the melt would be one of important controlling factors for the tourmaline stability. The tourmalines could be precipitated when the system evolved to the acidic hydrothermal regime as most hydrothermal brines and acidic gases exsolved from the magma. The Ilgwang tourmaline crystallization is products of hypogene orthomagmatic hydrothermal processes that were strongly pipe-controlled.

Chemical Characteristics for Hydrothermal Alteration of Surface Sediments from Submarine Volcanoes of the Tonga Arc (통가열도 해저화산 표층 퇴적물 내 열수변질의 화학적 특성)

  • Um, In Kwon;Chun, Jong-Hwa;Choi, Hunsoo;Choi, Man Sik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.245-262
    • /
    • 2013
  • We analyzed 29 surface sediment samples in five submarine volcanoes (TA12, TA19, TA22, TA25, and TA26) located in the southern part of the Tonga arc for trace elements and rare earth elements to investigate characteristics of the hydrothermal alteration of surface sediments. Based on analytical results of trace element and rare earth element (REE), surface sediments of TA12, TA19, and TA22 submarine volcanoes, which are located in the northern part of the study area, were very little or not influenced by hydrothermal fluids. In contrast, some stations of TA25 and TA26 submarine volcanoes were strongly affected by hydrothermal fluids. However, these two submarine volcanoes showed different features in element concentration in the sediments. Some stations of TA25 submarine volcano showed enrichment of Ni, Cu, Sn, Zn, Pb, Cr, Cd, Sb, W, Ba, Ta, Rb, Sr, and As, however, those of TA26 submarine volcano showed enrichment of Sn, Zn, Pb, Cd, Sb, Ba, Rb, and Sr. Stations which enriched trace elements were observed, enriched REEs were also observed. Average upper continental crust (UCC)-normalized REE patterns of the surface sediments generally showed low light REE (LREE) abundances and increased heavy REE (HREE) abundances. Eu enrichment was identified at several stations of TA25 and TA26 submarine volcanoes. In addition, enrichment of Ce was found at some stations of TA26 submarine volcano and these enrichment patterns were similar with hydrothermal fluid of near stations. Furthermore, TA25 and TA26 submarine volcanoes showed different enrichment characteristics of trace elements and REE. Trace elements were concentrated at TA25 submarine volcano. TA26 submarine volcano, on the other hand, observed highly enrichment of REE especially, Eu and Ce. As a result of the investigation, the characteristics and concentrations of REEs and trace elements in the surface sediments of each submarine volcano can be applied to identify hydrothermal alteration of sediments during exploration for hydrothermal deposits.