• Title/Summary/Keyword: 열가소성 플라스틱

Search Result 67, Processing Time 0.025 seconds

Study on Self-Healing Asphalt Containing Microcapsule (마이크로캡슐이 내재된 자기치유 아스팔트에 관한 연구)

  • Kwon, Young-Jin;Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.232-240
    • /
    • 2013
  • Microcapsules having healing agent were prepared in which 2,6-dimethylphenol (DMP) as a healing agent forms the core and melamine/formaldehyde resin forms the shell. Microcapsule-contained asphalts showed better mechanical properties than non-contained ones. And as the rest time passed the impact strength of microcapsule-contained asphalt was getting higher than that of asphalt without the microcapsule. As the rest time of 15 days passed, the original strength was restored. This tells that microcapsule-contained asphalt had the ability of self-healing. X-ray photos proved that DMP on asphalt fracture surface, which were burst out of the microcapsules when cracks occurred on asphalt, were polymerized to polyphenyleneoxide and this PPO covered the crack and healed the damage.

Preparation and Characterization of Poly(phenylene sulfide)-Functionalized MWNTs (폴리(페닐렌 설파이드)로 기능화된 다중벽 탄소나노튜브의 제조와 특성분석)

  • Hong, Sung Yeon;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.791-800
    • /
    • 2014
  • 4-Chlorobenzoyl (CB) group-attached multi-walled carbon nanotube (c-MWNT) was prepared via a direct Friedel-Crafts acylation of MWNT with 4-chlorobenzoic acid (CBA) in a $P_2O_5$/poly(phosphoric acid) medium. c-MWNT with a maximum chlorine content of 5.3 wt% (CB group content of 20.9 wt%) was obtained by controlling the amount of CBA during the reaction. Using a self-condensation polymerization of 4-chlorobenzenethiol (CBT) to poly(phenylene sulfide) (PPS), MWNT-g-PPS was prepared by adding c-MWNT of chlorine content of 5.3 wt% during the self-polymerization of CBT and removing homo PPS after polymerization in order to increase the interfacial interaction between PPS and MWNT. Thermal and surface properties of the MWNT-g-PPS were characterized. The results showed that PPS was formed on the surface of c-MWNT by the condensation of c-MWNT and CBT.

A Study of 3D Printing of Self-Customization Cast by Using Fused Deposition Modeling Technique of ABS Resin (ABS 수지의 용융적층조형방식에 의한 자가 맞춤형 부목의 3차원 출력 사례 연구)

  • Seoung, Youl-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6019-6026
    • /
    • 2015
  • In this study, we have tried to use 3D-printing technology, which is very useful for small amount production and individual personalization manufacturing to produce a cast customized by individual. To do this, we have made casts by the 3D printer in the method of fused deposition modeling technique using ABS(acrylonitrile butadiene styrene) resin which is thermoplastic plastics. The computed tomography of human hand part was used as the modeling of the cast and it was designed to circulate air well. As a result, an individual personalized cast that fitted well with the model part was produced. In addition, we could get more excellent radiography from the cast than the existing cast. In conclusion, this study of 3D-printing could be used as basic data when a similar designed structure in fused deposition modeling technique by ABS resin is printed out.

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee Kyong-Hwan;Roh Nam-Sun;Shin Dae-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.37-45
    • /
    • 2006
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one or important issue in recycling methods. This study was introduced over the trend or generation of plastic waste, in Korea pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy research). The characteristics of process developed in KIER are the continuous loading treatment or mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about $81\;wt\%$ liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

New Technology Development for Production of Alternative Fuel Oil from Thermal Degradation of Plastic Waste (폐플라스틱의 열분해에 의한 대체 오일 생산의 신기술 개발)

  • Lee, Kyong-Hwan;Roh, Nam-Sun;Shin, Dae-Hyun
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2005.10a
    • /
    • pp.34-46
    • /
    • 2005
  • For treating a huge amount of plastic waste with the environment problem, pyrolysis of plastic waste into alternative fuel oil is one of important issue in recycling methods. This study was introduced over the trend of generation of plastic waste, pyrolysis technology in domestic and foreign countries, basic technology in pyrolysis process and new technology of pyrolysis developed in KIER (Korea Institute of Energy Research). The characteristics of process developed in KIER are the continuous loading treatment of mixed plastic waste with an automatic control system, the minimization of wax production by circulation pyrolysis system in non-catalytic reactor, the reuse of gas produced and the oil recovery from sludge generated in pyrolysis plant, which have greatly the advantage economically and environmetally. The experiment result data in 300 ton/yr pilot plant showed about 81 wt% liquid yield for 3 days continuous reaction time, and also the boiling point distribution of light oil (LO) and heavy oil (HO) produced in distillation tower was a little higher than that of commercial gasoline and diesel, respectively.

  • PDF

A Study on the Mechanical and Combustion Characteristics According to Fiber Reinforcements Weight Fraction of FRTP (섬유강화재 함유율에 따른 FRTP의 기계적 특성 및 연소특성에 관한 연구)

  • Kim, Kyoung-Jin;Eom, Sang-Yong;Kim, Ki-Hwan
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2019
  • To examine the mechanical and combustion characteristics of FRTP, either polycarbonate or nylon were used as a matrix, and either glass fiber or carbon fiber were used as the fiber reinforcement. The fiber reinforcement content was differentiated at 0~40 wt%. The tensile strength and heat distortion temperature increased with increasing reinforcement content. When the fiber reinforcement content was above 30 wt%, the flammability rating showed V-0. As the fiber reinforcement content increased from 0 to 40 wt%, the peak heat release rate of polycarbonate decreased by approximately 51% and that of nylon decreased by approximately 24%. The rate of CO generation decreased for a period of time, and then increased. This appears to have resulted from incomplete combustion. The rate of CO2 generation shows a similar tendency with the heat release rate. As fiber reinforcement content levels increased from 0 to 40 wt%, the CO2 peak rate of polycarbonate generation decreased by approximately 50% and that of nylon decreased by 28%.

Production of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Bacillus sp. EMK-5020 Using Makgeolli Lees Enzymatic Hydrolysate and Propionic Acid as Carbon Sources (막걸리 주박 가수분해 산물과 propionic acid를 탄소원으로 이용한 Bacillus sp. EML-5020 균주로부터 poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 생합성)

  • Kwon, Kyungjin;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.510-522
    • /
    • 2022
  • In this study, to biosynthesize PHA with properties more similar to polypropylene, a Bacillus sp. EMK-5020 strain that biosynthesized poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was isolated from soil. Bacillus sp. EMK-5020 strain biosynthesized PHBV containing 1.3% 3-hydroxyvalerate (3HV) using reducing sugar contained in Makgeolli lees enzymatic hydrolysate (MLEH) as a single carbon source. As the amount of propionic acid, which was added as a second carbon source, increased, the content of 3HV also increased. PHBV containing up to 48.6% of 3HV was synthesized when 1.0 g/l of propionic acid was added. Based on these results, the strain was cultured for 72 hr in a 3 l fermenter using reducing sugar in MLEH (20 g/l) and propionic acid (1 g/l) as the main and secondary carbon sources, respectively. As a result, 6.4 g/l DCW and 50 wt% of PHBV (MLEH-PHBV) containing 8.9% 3HV were biosynthesized. Through gel permeation chromatography and thermogravimetric analysis, it was confirmed that the average molecular weight and the decomposition temperature of MLEH-PHBV were 152 kDa and 273℃, respectively. In conclusion, the Bacillus sp. EMK-5020 strain could biosynthesize PHBV containing various 3HV fractions when MLEH and propionic acid were used as carbon sources, and PHBV-MLEH containing 8.9% 3HV was confirmed to have higher thermal stability than standard PHBV (8% 3HV).