• Title/Summary/Keyword: 연안유출수

Search Result 109, Processing Time 0.031 seconds

Integrated sediment management for guidelines (통합적인 토사관리를 위한 가이드라인)

  • Kim, Yeon joong;Kim, Tae woo;Woo, Joung woon;Yoon, Jong sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.294-294
    • /
    • 2020
  • 연안표사는 해안의 정선이 후퇴해 침식이 심각해지는 한편, 항만·어항에서는 토사가 퇴적되어 선박이나 어선의 항로나 정박지 매몰로 선박의 항행 및 어업 활동에 지장을 초래하며 하천 하구부에서는 하구 폐쇄로 치수상의 문제점 등이 발생한다. 항만과 어항 관리자는 항로나 정박지의 매몰 대책에 대한 검토와 해안 관리자는 해안 보전 대책에 초점을 맞춰 제각기 목적을 위한 대책 검토를 수행하고 있다. 이처럼 매년 적지 않은 비용이 소요됨에도 불구하고 뚜렷하고 효과적인 대책 없이 연안에 인위적인 변화를 발생시켜 어디에선 모래가 퇴적되고 그 영향에 따라 또 다른 곳에서는 침식되는 악순환이 반복되고 있다. 연안침식 방지를 위한 대책을 구축하기 위해서는 어느 한 곳에 중점적인 대책이 아닌 표사계 전체의 관점에서 상호 간의 간섭 효과를 고려한 통합적인 관점으로부터 대책을 강구해야 할 것이다. 연안지역에서의 표사수지는 산지, 댐, 하천, 해안 등 각각의 영역으로부터 유입 및 유출에 따라 안정된 해안이 조성된다. 하지만 환경적 및 인위적 변화에 따라 안정된 표사수지는 파괴되며 이 영향에 따라 표사의 이동이 발생한다. 지금까지의 토사관리는 각각의 영역에서 재해저감 및 토사관리를 위한 여러 대책의 효과가 나타나고 있으나 통합적인 토사관리에 있어 상호간의 피드백이 단절되어 연안역에서 발생하는 침식에 대한 정확한 원인 규명에 많은 어려움과 문제점이 발생하고 있다. 이처럼 통합적인 연안침식 관리를 위해서는 연안역으로 유입되는 토사의 이동 메커니즘 규명이 매우 중요하며 이를 바탕으로 정확한 유사량 산정을 통해 적절한 대책을 마련할 수 있다. 또한, 지역적 특징이 강한 우리나라에서는 통합적인 연안관리를 위한 구체적인 방안 검토가 이루어지고 있지 않지만, 일본에서는 지속적인 관측과 모니터링 조사를 통해 체계적인 관리를 수행하고 있다. 따라서 본 연구에서는 일본에서 진행 중인 통합적인 토사관리 가이드라인에 따른 토사관리의 구체적인 방법과 그에 따른 정선변화 및 표수사지 체계를 산정하였다.

  • PDF

Effect of Typhoon 'Rusa' on the Natural Yeon-gok Stream and Coastal Ecosystem in the Yeong-Dong Province (영동지방 자연형 하천(강릉 연곡천)과 인근 연안 생태계에 대한 태풍 루사의 영향)

  • Yoon Yi-Yong;Kim Hung-sub
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.35-41
    • /
    • 2004
  • The yeongok stream originates at the natural park, Mt. O-dae and flows to the East Sea of korea, normally maintaining I or II grade of water quality and its average water flux is 352,100 ㎥/d. However, the typhoon 'Rusa', which occured on 31 August 2002, changed its watercourse and configuration, and the ecosystem was deeply damaged. Moreover, the hydrological characteristics were once more transformed, and the ecosystem was secondarily damaged during repair-work of destroyed bridges and elevations. After the flood disaster, the species diversity diminished 17% for attached diatom and 44% for aquatic animals. However, the earth and sand, dug from river bed during intensive repair-work throughout the entire stream, made diversity drop to 32% for the diatom and the aquatic animals were wiped out. Especially, fishes were totally destroyed except for some species such as Moroco oxycephalus in the upper stream. The yeongok stream has little contamination source and short water residence time due to the short length and rapid slope, and consequently a temporary deterioration of water quality caused by repair-work may be rapidly recovered, but it needs a long time to restore the damaged ecosystem.

  • PDF

동중국해 북부해역 수온, 염분의 분포 변동 특성

  • Jang, Lee-Hyeon;Kim, Sang-U;Go, U-Jin;Geleekko, Yamada;Seo, Yeong-Sang
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.331-335
    • /
    • 2007
  • 본 연구에서는 장기간의 현장관측 수온, 염분자료를 분석하여 동중국해 북부해역에서 계절별 수온, 염분의 변동 특성을 조사하였다. 표층의 경우 춘계 수온상승에는 공간적인 차이가 있다. 또한 서부해역($125^{\circ}E$ 이서)에서는 32 psu 이하의 저염 분포가 나타나고 제주 남서해역에서 33psu 이하의 저염수가 춘계부터 제주 주변해역으로 확장한다. 하계 표층염분은 $28.0{\sim}32.4$ psu로 연중 최저값은 보이며, 전해역 표층 염분이 33psu 이하로 저염의 양자강 희석수가 하계에 동중국해 북부해역 표층 전체에 영향을 미치고 있다. 추계의 표층수온과 염분은 동고서저형의 수평분포를 나타낸다. 수온 하강은 서부해역인 대륙 연안수역이 동부의 대마난류수역에 비해 크고, 서부해역에서 33psu 이하의 설상형 저염분포가 이시기에 남동쪽으로 관입되는 형태로 나타나 동계의 남북방향의 염분전선과 이어지게 된다. 연직해황의 경우 동계 수온과 염분은 활발한 대륙작용에 의해 전수층에서 균일한 분포를 나타내며, 대륙연안수역에서는 저온, 저염($12^{\circ}C$, 33psu 이하)의 분포를, 대마난류수역에서는 고온, 고염($16^{\circ}C$, 34.4psu 이상)분포의 지역적인 특성으로 구별된다. 춘계에는 수온약층이 형성되며, 저층에는 동계에 형성되어 대륙연안수와 외양수 사이에 고립된 $13^{\circ}C$ 이하의 냉수괴가 분포한다. 염분은 표층 저염화가 시작된다. 하계에는 양자강 유출수의 영향으로 전해역 표층에서는 30psu 이하로 전해역에서 저염화 양상이 나타나며, 표층에서 30m 층까지 매우 강한 염분약층이 형성된다. 추계 수온 엽문은 균일한 연직수온분포가 나타나며, 동부해역에서는 수심 $75{\sim}100m$사이에서 수온, 염분약층이 형성된다. 동중국해의 수괴는 뚜렷한 계절 변동을 보이며, 대마난류수역인 동부해역에서는 수괴 계절변동의 요인으로 계절 수온변동이 지배적이고, 수온변동은 춘계와 하계 사이에 가장 크다. 중앙부와 대륙연안역인 서부해역에서는 수괴 계절변동에 수온외에 염분 변화가 주요한 요인으로 작용하며, 염분은 하계와 추계 사이에 가장 변동이 크게 나타난다. 즉, 동중국해의 수괴변동에는 변동요인에 따른 공간적인 차이가 있으며, 수괴변화 특성으로 동중국해는 수온변화가 수괴변동에 직접요인이 되는 동부 대마난류수역과 염분변화가 수괴변동의 직접요인인 서부의 대륙연안수역으로 구분된다.

  • PDF

Oceanographic Studies Related to the Tidal front in the Mid-Yellow Sea off Korea: Physical Aspects (황해 중부의 조석전선과 연관된 해양학적 연구 : 물리적 특성)

  • SEUNG, YOUNG HO;CHUNG, JUNG HO;PARK, YONG CHUL
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.84-95
    • /
    • 1990
  • Observations by CTD castings, moored current meters and satellite imageries reveal some physical characteristics of the area around the tidal mixing front found in the mid-Yellow Sea off Korea. Tidal mixing is the greatest at the promontory of Taean Peninsula with a front around it. The front appears in April with the start of solar heating, becomes most clear in August and disappears in November with the start of surface cooling. In the north of the front, tidal fluctuations of temperature and salinity induced by tidal currents manifest the existence of the front, Differently from the usual tidal mixing front, the front in Kyunggi Bay is formed by presence of the water discharged from the Han River which meets the offshore water at the front. Near the surface cold center, vertically well-mixed zone extends to about 50 Km offshore from the coast, Farther south, this structure is generally retained but with lesser degree of vertical mixing. Within the relatively well-fixed coastal zone, the fresh water discharged from the Kum River makes another salinity front of smaller extent. At some places around this salinity front, an Upwelling-like feature is remarked.

  • PDF

Penetration of Weathered Oil and Dispersed Oil and its Ecological Effects on Tidal Flat - as Infiltration of Dissolved Matter - (유출된 풍화유와 분산유의 조간대 침투 및 생태계 영향 - 용존상 물질의 침투량 변화 -)

  • Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.134-139
    • /
    • 2005
  • The purpose of this study is to quantify the penetration behavior of spilled weathered oil and dispersed oil and to evaluate the influence of the penetrated oils on seawater infiltration in tidal flat environment. The penetration depths of the spilled oils into the tidal flat sediments were gradually deeper according to increase the stranded oil volume. The penetration depth of stranded oil were abruptly dropped at first falling tide, but were not significantly fluctuated after that. Moreover, hydrocarbon concentration was most high within the upper 2 cm. Seawater infiltration was decreased in proportion to the stranded oil volume. Dispersed oil was easily permitted the seawater infiltration than weathered oil and crude oil. Therefore, quick cleaning actions fur penetrated oil will be required far recovery of seawater infiltration, because the seawater contains oxygen and nutrients required for the survival of benthic organisms in tidal flat.

  • PDF

Numerical Experiment of Low Salinity Due to the Variation of Yangtze River Discharge in East China Sea (동중국해역에서 양자강 유출량 변화에 따른 저염확산 수치실험)

  • 황재동;조규대;정희동;박성은
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.9 no.2
    • /
    • pp.53-57
    • /
    • 2003
  • Low salinity water appears by outflow of fresh water from the Yangtze River in southwestern sea of the Korean peninsula. The water volume discharged form the Yangtze River is not constant with year, according to the time series data recorded in the past, the maximum value of the discharged volume is two times as high asr minimum value. Therefore, the distribution of low salinity water over study area with different discharged fresh water volume is studied using numerical model, Princeton Ocean Model (POM). POM is three dimensional circulation model selecting a $\sigma$­coordinate. According to the result of numerical simulation by the Model, current velocity on the continental slope is faster than those in other regions, current which flows toward the central part of the Yellow Sea through western part of Jeju exists, and also, southward flow along the coastal region exists. the greater discharged volume from the Yangrze River is. the lower salinity water appears closer to Jeju.

  • PDF

Chemical Characteristics of Water Types in the Korea Strait (해양 화학적 특성으로 본 대한해협의 수계)

  • LEE Won Jae;CHO Kyu Dae;CHOO Hyo Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.219-229
    • /
    • 1984
  • Physical and chemical survey on western channel of the Korea Strait was made using oceanographic data from July 25 to July 31, 1983. Four water types were distinguished at western channel: runoff of the Nakdong River, Tsushima Current Waters, Keoje Coastal Waters, and Ulsan Coastal Waters. Influence of the Nakdong River was greater at Southern East Coast near Yeong-Do Island in Pusan than at Keoje Coast. General characteristics of these four water types were as follows : For runoff of the Nakdong River, transparency was within 3 m, water colour chinese yellow (number 11), surface temperature $18{\sim}19^{\circ}C$, salinity less than $31\%0$, surface dissolved oxygen (D.O.) $4.5{\sim}5.0ml/l$, contents of phosphate $0.25{\sim}0.5{\mu}g-at./l$ ; these values were the highest among these four water types. For Tsushima Current waters, transparency was greater than 15 m, waters color blue (number $2{\sim}4$), surface temperature about $23^{\circ}C$, salinity $32{\sim}33\%0$, and surface D.O. greater than 5,0 ml/l. Phosphate, nitrate and silicate were less than 0.25, 2.0, and $2.5{\mu}g-at./l$, respectively; these values were the lowest among these four water types. Keoje Coastal Waters had low temperature ranging $20{\sim}21^{\circ}C$ at surface, and high salinity greater than $33\%0$. D.O. was less than 5.0 ml/l, phoshpate, $0.5{\mu}g-at./l$ nitrate and silicate were less than $3.5{\mu}g-at./l$. Ulsan Coastal Waters had the lowest surface temperature among these four types; surface temperature was less than $16^{\circ}C$, salinity greater than $33.5\%0$, and D.O., phosphate and nitrate had very high values. It seems that these high values resulted from upwelling phenomena.

  • PDF

The Morphological Changes of Deltaic Barrier Islands in the Nakdong River Estuary after the Construction of River Barrage (하구둑 건설 이후 낙동강 하구역 삼각주 연안사주의 지형변화)

  • Kim, Sung-Hwan
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.4 s.109
    • /
    • pp.416-427
    • /
    • 2005
  • This paper aims to investigate morphological changes of deltaic barrier islands in the Nakdong Estuary and especially their spatial variations after barrage construction. We analyzed shorelines, geometrical centroids, and areas to reveal the changes of barrier islands. Here, we suggest three interesting points from this study. First, each individual barrier island in the Nakdong estuary goes through a different stage of the geomorphic cycle. The frontal barrier islands such as Sinja-do and Doyo-deung grow because they are located in front of the gates of the barrage. Sediments in water out of the gates are moved to offshore and then reworked by coastal processes such as waves and tides. Second, on the contrary, Baekhap-deung located behind Doyo-deung now diminishes indicating that sediments mainly move to the frontal growing island. Third, there is no morphological change in several barrier islands far away from the main flow of the Nakdong river such as Jinwoo-do, Daema-deung, and Jangja-do. In conclusion, barrier islands in the Nakdong estuary show distinct spatial variations. As a barrier island is closer to the main channel or is in the frontal location, there happens a very dynamic change in the morphology of the island.

Effects of Stranded Oil on Seawater Infiltration in a Tidal flat Environment (조간대에 표착한 기름이 해수의 침투에 미치는 영향)

  • Cheong Jo, Cheong
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 2003
  • Understanding the seawater infiltration into tidal flat sediments is very important, because it is significantly correlated with the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival. However oil blocks interstitial spaces of sediments, reduces seawater infiltration and results in the decrease in oxygen, nutrients and other food supply to benthic communities. The penetration depth of the stranded oil into the sediments is one of the most significant information to know the effect of spilled oil on biological communities and to set up a cleaning method. So we initiated this study to quantify the penetration behavior of spilled oil and to evaluate the influence of the penetrated oil on seawater infiltration in tidal flat environment and its ecological implications. The penetration depth of the crude oil into the tidal flat sediments was two times deeper than that of the fuel oil C, and the depth was significantly affected by stranded oil volume. However, the penetration depth of stranded oil was abruptly dropped at first falling tide but not significantly fluctuated after that. Moreover, hydrocarbon concentration showed the highest within the upper 2 cm. Seawater infiltration was decreased in proportion to the stranded oil volume. The seawater infiltration was more affected by the penetrated fuel oil C about 1.7 times than the crude oil, because the interstitial spaces of the top of sediments were more cleared by the fuel oil C. Therefore, quick cleaning actions for penetrated oil will be necessary for recovery of seawater infiltration because the seawater contains oxygen and nutrients necessary for the survival of benthic organisms in tidal flat.

Evaluation of Affecting Factors on Formation of Oil-Mineral Aggregates for Stranded Oil on Intertidal Flat (연안 조간대에 표착한 유출유의 OMA 형성 영향인자의 평가)

  • Cheong, Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.151-156
    • /
    • 2009
  • The purpose of this study is to evaluate the affecting factors on Oil-Mineral Aggregates(OMA) for stranded oil on intertidal flat, because the OMA formation enhances the oil dispersion and biodegradation rates. We choose the affecting factors such as spilled oil concentrations(50, 100, 200, 300, 400, 500 mg/L), mineral concentration(100, 200, 500, 1,000, 2,000, 4,000 mg/L), salinity(10, 20, 30, 40 psu), shaking time(1, 2, 4, 8, 12, 24 hr) and applied dispersant volume(0, 5, 10, 15, 20%). Major conclusions derived from this study are as follows. It was observed that the kaolinite interacts three times strongly with crude oil than quartz. OMA formation was enhanced with increasing of spilled oil concentrations, whereas the increase of salinity rarely affected the OMA formation. The shaking time for OMA formation affected positively with kaolinite, but quartz was irrespective the shaking time. The applied dispersant enhanced the OMA formation by 13% in kaolinite and 56% in quartz experimental condition.

  • PDF